| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785 | 
							- # File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
 
- from __future__ import annotations
 
- import asyncio
 
- from typing import List, Iterable
 
- from typing_extensions import Literal
 
- from concurrent.futures import Future, ThreadPoolExecutor, as_completed
 
- import httpx
 
- import sniffio
 
- from .... import _legacy_response
 
- from ....types import FileObject
 
- from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes
 
- from ...._utils import (
 
-     is_given,
 
-     maybe_transform,
 
-     async_maybe_transform,
 
- )
 
- from ...._compat import cached_property
 
- from ...._resource import SyncAPIResource, AsyncAPIResource
 
- from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
 
- from ....pagination import SyncCursorPage, AsyncCursorPage
 
- from ....types.beta import FileChunkingStrategyParam
 
- from ...._base_client import AsyncPaginator, make_request_options
 
- from ....types.beta.vector_stores import file_batch_create_params, file_batch_list_files_params
 
- from ....types.beta.file_chunking_strategy_param import FileChunkingStrategyParam
 
- from ....types.beta.vector_stores.vector_store_file import VectorStoreFile
 
- from ....types.beta.vector_stores.vector_store_file_batch import VectorStoreFileBatch
 
- __all__ = ["FileBatches", "AsyncFileBatches"]
 
- class FileBatches(SyncAPIResource):
 
-     @cached_property
 
-     def with_raw_response(self) -> FileBatchesWithRawResponse:
 
-         """
 
-         This property can be used as a prefix for any HTTP method call to return
 
-         the raw response object instead of the parsed content.
 
-         For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
 
-         """
 
-         return FileBatchesWithRawResponse(self)
 
-     @cached_property
 
-     def with_streaming_response(self) -> FileBatchesWithStreamingResponse:
 
-         """
 
-         An alternative to `.with_raw_response` that doesn't eagerly read the response body.
 
-         For more information, see https://www.github.com/openai/openai-python#with_streaming_response
 
-         """
 
-         return FileBatchesWithStreamingResponse(self)
 
-     def create(
 
-         self,
 
-         vector_store_id: str,
 
-         *,
 
-         file_ids: List[str],
 
-         chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
 
-         # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
 
-         # The extra values given here take precedence over values defined on the client or passed to this method.
 
-         extra_headers: Headers | None = None,
 
-         extra_query: Query | None = None,
 
-         extra_body: Body | None = None,
 
-         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
 
-     ) -> VectorStoreFileBatch:
 
-         """
 
-         Create a vector store file batch.
 
-         Args:
 
-           file_ids: A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that
 
-               the vector store should use. Useful for tools like `file_search` that can access
 
-               files.
 
-           chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto`
 
-               strategy. Only applicable if `file_ids` is non-empty.
 
-           extra_headers: Send extra headers
 
-           extra_query: Add additional query parameters to the request
 
-           extra_body: Add additional JSON properties to the request
 
-           timeout: Override the client-level default timeout for this request, in seconds
 
-         """
 
-         if not vector_store_id:
 
-             raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
 
-         extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
 
-         return self._post(
 
-             f"/vector_stores/{vector_store_id}/file_batches",
 
-             body=maybe_transform(
 
-                 {
 
-                     "file_ids": file_ids,
 
-                     "chunking_strategy": chunking_strategy,
 
-                 },
 
-                 file_batch_create_params.FileBatchCreateParams,
 
-             ),
 
-             options=make_request_options(
 
-                 extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
 
-             ),
 
-             cast_to=VectorStoreFileBatch,
 
-         )
 
-     def retrieve(
 
-         self,
 
-         batch_id: str,
 
-         *,
 
-         vector_store_id: str,
 
-         # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
 
-         # The extra values given here take precedence over values defined on the client or passed to this method.
 
-         extra_headers: Headers | None = None,
 
-         extra_query: Query | None = None,
 
-         extra_body: Body | None = None,
 
-         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
 
-     ) -> VectorStoreFileBatch:
 
-         """
 
-         Retrieves a vector store file batch.
 
-         Args:
 
-           extra_headers: Send extra headers
 
-           extra_query: Add additional query parameters to the request
 
-           extra_body: Add additional JSON properties to the request
 
-           timeout: Override the client-level default timeout for this request, in seconds
 
-         """
 
-         if not vector_store_id:
 
-             raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
 
-         if not batch_id:
 
-             raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
 
-         extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
 
-         return self._get(
 
-             f"/vector_stores/{vector_store_id}/file_batches/{batch_id}",
 
-             options=make_request_options(
 
-                 extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
 
-             ),
 
-             cast_to=VectorStoreFileBatch,
 
-         )
 
-     def cancel(
 
-         self,
 
-         batch_id: str,
 
-         *,
 
-         vector_store_id: str,
 
-         # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
 
-         # The extra values given here take precedence over values defined on the client or passed to this method.
 
-         extra_headers: Headers | None = None,
 
-         extra_query: Query | None = None,
 
-         extra_body: Body | None = None,
 
-         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
 
-     ) -> VectorStoreFileBatch:
 
-         """Cancel a vector store file batch.
 
-         This attempts to cancel the processing of
 
-         files in this batch as soon as possible.
 
-         Args:
 
-           extra_headers: Send extra headers
 
-           extra_query: Add additional query parameters to the request
 
-           extra_body: Add additional JSON properties to the request
 
-           timeout: Override the client-level default timeout for this request, in seconds
 
-         """
 
-         if not vector_store_id:
 
-             raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
 
-         if not batch_id:
 
-             raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
 
-         extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
 
-         return self._post(
 
-             f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel",
 
-             options=make_request_options(
 
-                 extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
 
-             ),
 
-             cast_to=VectorStoreFileBatch,
 
-         )
 
-     def create_and_poll(
 
-         self,
 
-         vector_store_id: str,
 
-         *,
 
-         file_ids: List[str],
 
-         poll_interval_ms: int | NotGiven = NOT_GIVEN,
 
-         chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
 
-     ) -> VectorStoreFileBatch:
 
-         """Create a vector store batch and poll until all files have been processed."""
 
-         batch = self.create(
 
-             vector_store_id=vector_store_id,
 
-             file_ids=file_ids,
 
-             chunking_strategy=chunking_strategy,
 
-         )
 
-         # TODO: don't poll unless necessary??
 
-         return self.poll(
 
-             batch.id,
 
-             vector_store_id=vector_store_id,
 
-             poll_interval_ms=poll_interval_ms,
 
-         )
 
-     def list_files(
 
-         self,
 
-         batch_id: str,
 
-         *,
 
-         vector_store_id: str,
 
-         after: str | NotGiven = NOT_GIVEN,
 
-         before: str | NotGiven = NOT_GIVEN,
 
-         filter: Literal["in_progress", "completed", "failed", "cancelled"] | NotGiven = NOT_GIVEN,
 
-         limit: int | NotGiven = NOT_GIVEN,
 
-         order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
 
-         # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
 
-         # The extra values given here take precedence over values defined on the client or passed to this method.
 
-         extra_headers: Headers | None = None,
 
-         extra_query: Query | None = None,
 
-         extra_body: Body | None = None,
 
-         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
 
-     ) -> SyncCursorPage[VectorStoreFile]:
 
-         """
 
-         Returns a list of vector store files in a batch.
 
-         Args:
 
-           after: A cursor for use in pagination. `after` is an object ID that defines your place
 
-               in the list. For instance, if you make a list request and receive 100 objects,
 
-               ending with obj_foo, your subsequent call can include after=obj_foo in order to
 
-               fetch the next page of the list.
 
-           before: A cursor for use in pagination. `before` is an object ID that defines your place
 
-               in the list. For instance, if you make a list request and receive 100 objects,
 
-               starting with obj_foo, your subsequent call can include before=obj_foo in order
 
-               to fetch the previous page of the list.
 
-           filter: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`.
 
-           limit: A limit on the number of objects to be returned. Limit can range between 1 and
 
-               100, and the default is 20.
 
-           order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending
 
-               order and `desc` for descending order.
 
-           extra_headers: Send extra headers
 
-           extra_query: Add additional query parameters to the request
 
-           extra_body: Add additional JSON properties to the request
 
-           timeout: Override the client-level default timeout for this request, in seconds
 
-         """
 
-         if not vector_store_id:
 
-             raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
 
-         if not batch_id:
 
-             raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
 
-         extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
 
-         return self._get_api_list(
 
-             f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/files",
 
-             page=SyncCursorPage[VectorStoreFile],
 
-             options=make_request_options(
 
-                 extra_headers=extra_headers,
 
-                 extra_query=extra_query,
 
-                 extra_body=extra_body,
 
-                 timeout=timeout,
 
-                 query=maybe_transform(
 
-                     {
 
-                         "after": after,
 
-                         "before": before,
 
-                         "filter": filter,
 
-                         "limit": limit,
 
-                         "order": order,
 
-                     },
 
-                     file_batch_list_files_params.FileBatchListFilesParams,
 
-                 ),
 
-             ),
 
-             model=VectorStoreFile,
 
-         )
 
-     def poll(
 
-         self,
 
-         batch_id: str,
 
-         *,
 
-         vector_store_id: str,
 
-         poll_interval_ms: int | NotGiven = NOT_GIVEN,
 
-     ) -> VectorStoreFileBatch:
 
-         """Wait for the given file batch to be processed.
 
-         Note: this will return even if one of the files failed to process, you need to
 
-         check batch.file_counts.failed_count to handle this case.
 
-         """
 
-         headers: dict[str, str] = {"X-Stainless-Poll-Helper": "true"}
 
-         if is_given(poll_interval_ms):
 
-             headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms)
 
-         while True:
 
-             response = self.with_raw_response.retrieve(
 
-                 batch_id,
 
-                 vector_store_id=vector_store_id,
 
-                 extra_headers=headers,
 
-             )
 
-             batch = response.parse()
 
-             if batch.file_counts.in_progress > 0:
 
-                 if not is_given(poll_interval_ms):
 
-                     from_header = response.headers.get("openai-poll-after-ms")
 
-                     if from_header is not None:
 
-                         poll_interval_ms = int(from_header)
 
-                     else:
 
-                         poll_interval_ms = 1000
 
-                 self._sleep(poll_interval_ms / 1000)
 
-                 continue
 
-             return batch
 
-     def upload_and_poll(
 
-         self,
 
-         vector_store_id: str,
 
-         *,
 
-         files: Iterable[FileTypes],
 
-         max_concurrency: int = 5,
 
-         file_ids: List[str] = [],
 
-         poll_interval_ms: int | NotGiven = NOT_GIVEN,
 
-         chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
 
-     ) -> VectorStoreFileBatch:
 
-         """Uploads the given files concurrently and then creates a vector store file batch.
 
-         If you've already uploaded certain files that you want to include in this batch
 
-         then you can pass their IDs through the `file_ids` argument.
 
-         By default, if any file upload fails then an exception will be eagerly raised.
 
-         The number of concurrency uploads is configurable using the `max_concurrency`
 
-         parameter.
 
-         Note: this method only supports `asyncio` or `trio` as the backing async
 
-         runtime.
 
-         """
 
-         results: list[FileObject] = []
 
-         with ThreadPoolExecutor(max_workers=max_concurrency) as executor:
 
-             futures: list[Future[FileObject]] = [
 
-                 executor.submit(
 
-                     self._client.files.create,
 
-                     file=file,
 
-                     purpose="assistants",
 
-                 )
 
-                 for file in files
 
-             ]
 
-         for future in as_completed(futures):
 
-             exc = future.exception()
 
-             if exc:
 
-                 raise exc
 
-             results.append(future.result())
 
-         batch = self.create_and_poll(
 
-             vector_store_id=vector_store_id,
 
-             file_ids=[*file_ids, *(f.id for f in results)],
 
-             poll_interval_ms=poll_interval_ms,
 
-             chunking_strategy=chunking_strategy,
 
-         )
 
-         return batch
 
- class AsyncFileBatches(AsyncAPIResource):
 
-     @cached_property
 
-     def with_raw_response(self) -> AsyncFileBatchesWithRawResponse:
 
-         """
 
-         This property can be used as a prefix for any HTTP method call to return
 
-         the raw response object instead of the parsed content.
 
-         For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
 
-         """
 
-         return AsyncFileBatchesWithRawResponse(self)
 
-     @cached_property
 
-     def with_streaming_response(self) -> AsyncFileBatchesWithStreamingResponse:
 
-         """
 
-         An alternative to `.with_raw_response` that doesn't eagerly read the response body.
 
-         For more information, see https://www.github.com/openai/openai-python#with_streaming_response
 
-         """
 
-         return AsyncFileBatchesWithStreamingResponse(self)
 
-     async def create(
 
-         self,
 
-         vector_store_id: str,
 
-         *,
 
-         file_ids: List[str],
 
-         chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
 
-         # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
 
-         # The extra values given here take precedence over values defined on the client or passed to this method.
 
-         extra_headers: Headers | None = None,
 
-         extra_query: Query | None = None,
 
-         extra_body: Body | None = None,
 
-         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
 
-     ) -> VectorStoreFileBatch:
 
-         """
 
-         Create a vector store file batch.
 
-         Args:
 
-           file_ids: A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that
 
-               the vector store should use. Useful for tools like `file_search` that can access
 
-               files.
 
-           chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto`
 
-               strategy. Only applicable if `file_ids` is non-empty.
 
-           extra_headers: Send extra headers
 
-           extra_query: Add additional query parameters to the request
 
-           extra_body: Add additional JSON properties to the request
 
-           timeout: Override the client-level default timeout for this request, in seconds
 
-         """
 
-         if not vector_store_id:
 
-             raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
 
-         extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
 
-         return await self._post(
 
-             f"/vector_stores/{vector_store_id}/file_batches",
 
-             body=await async_maybe_transform(
 
-                 {
 
-                     "file_ids": file_ids,
 
-                     "chunking_strategy": chunking_strategy,
 
-                 },
 
-                 file_batch_create_params.FileBatchCreateParams,
 
-             ),
 
-             options=make_request_options(
 
-                 extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
 
-             ),
 
-             cast_to=VectorStoreFileBatch,
 
-         )
 
-     async def retrieve(
 
-         self,
 
-         batch_id: str,
 
-         *,
 
-         vector_store_id: str,
 
-         # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
 
-         # The extra values given here take precedence over values defined on the client or passed to this method.
 
-         extra_headers: Headers | None = None,
 
-         extra_query: Query | None = None,
 
-         extra_body: Body | None = None,
 
-         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
 
-     ) -> VectorStoreFileBatch:
 
-         """
 
-         Retrieves a vector store file batch.
 
-         Args:
 
-           extra_headers: Send extra headers
 
-           extra_query: Add additional query parameters to the request
 
-           extra_body: Add additional JSON properties to the request
 
-           timeout: Override the client-level default timeout for this request, in seconds
 
-         """
 
-         if not vector_store_id:
 
-             raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
 
-         if not batch_id:
 
-             raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
 
-         extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
 
-         return await self._get(
 
-             f"/vector_stores/{vector_store_id}/file_batches/{batch_id}",
 
-             options=make_request_options(
 
-                 extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
 
-             ),
 
-             cast_to=VectorStoreFileBatch,
 
-         )
 
-     async def cancel(
 
-         self,
 
-         batch_id: str,
 
-         *,
 
-         vector_store_id: str,
 
-         # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
 
-         # The extra values given here take precedence over values defined on the client or passed to this method.
 
-         extra_headers: Headers | None = None,
 
-         extra_query: Query | None = None,
 
-         extra_body: Body | None = None,
 
-         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
 
-     ) -> VectorStoreFileBatch:
 
-         """Cancel a vector store file batch.
 
-         This attempts to cancel the processing of
 
-         files in this batch as soon as possible.
 
-         Args:
 
-           extra_headers: Send extra headers
 
-           extra_query: Add additional query parameters to the request
 
-           extra_body: Add additional JSON properties to the request
 
-           timeout: Override the client-level default timeout for this request, in seconds
 
-         """
 
-         if not vector_store_id:
 
-             raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
 
-         if not batch_id:
 
-             raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
 
-         extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
 
-         return await self._post(
 
-             f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel",
 
-             options=make_request_options(
 
-                 extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
 
-             ),
 
-             cast_to=VectorStoreFileBatch,
 
-         )
 
-     async def create_and_poll(
 
-         self,
 
-         vector_store_id: str,
 
-         *,
 
-         file_ids: List[str],
 
-         poll_interval_ms: int | NotGiven = NOT_GIVEN,
 
-         chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
 
-     ) -> VectorStoreFileBatch:
 
-         """Create a vector store batch and poll until all files have been processed."""
 
-         batch = await self.create(
 
-             vector_store_id=vector_store_id,
 
-             file_ids=file_ids,
 
-             chunking_strategy=chunking_strategy,
 
-         )
 
-         # TODO: don't poll unless necessary??
 
-         return await self.poll(
 
-             batch.id,
 
-             vector_store_id=vector_store_id,
 
-             poll_interval_ms=poll_interval_ms,
 
-         )
 
-     def list_files(
 
-         self,
 
-         batch_id: str,
 
-         *,
 
-         vector_store_id: str,
 
-         after: str | NotGiven = NOT_GIVEN,
 
-         before: str | NotGiven = NOT_GIVEN,
 
-         filter: Literal["in_progress", "completed", "failed", "cancelled"] | NotGiven = NOT_GIVEN,
 
-         limit: int | NotGiven = NOT_GIVEN,
 
-         order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,
 
-         # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
 
-         # The extra values given here take precedence over values defined on the client or passed to this method.
 
-         extra_headers: Headers | None = None,
 
-         extra_query: Query | None = None,
 
-         extra_body: Body | None = None,
 
-         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
 
-     ) -> AsyncPaginator[VectorStoreFile, AsyncCursorPage[VectorStoreFile]]:
 
-         """
 
-         Returns a list of vector store files in a batch.
 
-         Args:
 
-           after: A cursor for use in pagination. `after` is an object ID that defines your place
 
-               in the list. For instance, if you make a list request and receive 100 objects,
 
-               ending with obj_foo, your subsequent call can include after=obj_foo in order to
 
-               fetch the next page of the list.
 
-           before: A cursor for use in pagination. `before` is an object ID that defines your place
 
-               in the list. For instance, if you make a list request and receive 100 objects,
 
-               starting with obj_foo, your subsequent call can include before=obj_foo in order
 
-               to fetch the previous page of the list.
 
-           filter: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`.
 
-           limit: A limit on the number of objects to be returned. Limit can range between 1 and
 
-               100, and the default is 20.
 
-           order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending
 
-               order and `desc` for descending order.
 
-           extra_headers: Send extra headers
 
-           extra_query: Add additional query parameters to the request
 
-           extra_body: Add additional JSON properties to the request
 
-           timeout: Override the client-level default timeout for this request, in seconds
 
-         """
 
-         if not vector_store_id:
 
-             raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")
 
-         if not batch_id:
 
-             raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
 
-         extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
 
-         return self._get_api_list(
 
-             f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/files",
 
-             page=AsyncCursorPage[VectorStoreFile],
 
-             options=make_request_options(
 
-                 extra_headers=extra_headers,
 
-                 extra_query=extra_query,
 
-                 extra_body=extra_body,
 
-                 timeout=timeout,
 
-                 query=maybe_transform(
 
-                     {
 
-                         "after": after,
 
-                         "before": before,
 
-                         "filter": filter,
 
-                         "limit": limit,
 
-                         "order": order,
 
-                     },
 
-                     file_batch_list_files_params.FileBatchListFilesParams,
 
-                 ),
 
-             ),
 
-             model=VectorStoreFile,
 
-         )
 
-     async def poll(
 
-         self,
 
-         batch_id: str,
 
-         *,
 
-         vector_store_id: str,
 
-         poll_interval_ms: int | NotGiven = NOT_GIVEN,
 
-     ) -> VectorStoreFileBatch:
 
-         """Wait for the given file batch to be processed.
 
-         Note: this will return even if one of the files failed to process, you need to
 
-         check batch.file_counts.failed_count to handle this case.
 
-         """
 
-         headers: dict[str, str] = {"X-Stainless-Poll-Helper": "true"}
 
-         if is_given(poll_interval_ms):
 
-             headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms)
 
-         while True:
 
-             response = await self.with_raw_response.retrieve(
 
-                 batch_id,
 
-                 vector_store_id=vector_store_id,
 
-                 extra_headers=headers,
 
-             )
 
-             batch = response.parse()
 
-             if batch.file_counts.in_progress > 0:
 
-                 if not is_given(poll_interval_ms):
 
-                     from_header = response.headers.get("openai-poll-after-ms")
 
-                     if from_header is not None:
 
-                         poll_interval_ms = int(from_header)
 
-                     else:
 
-                         poll_interval_ms = 1000
 
-                 await self._sleep(poll_interval_ms / 1000)
 
-                 continue
 
-             return batch
 
-     async def upload_and_poll(
 
-         self,
 
-         vector_store_id: str,
 
-         *,
 
-         files: Iterable[FileTypes],
 
-         max_concurrency: int = 5,
 
-         file_ids: List[str] = [],
 
-         poll_interval_ms: int | NotGiven = NOT_GIVEN,
 
-         chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,
 
-     ) -> VectorStoreFileBatch:
 
-         """Uploads the given files concurrently and then creates a vector store file batch.
 
-         If you've already uploaded certain files that you want to include in this batch
 
-         then you can pass their IDs through the `file_ids` argument.
 
-         By default, if any file upload fails then an exception will be eagerly raised.
 
-         The number of concurrency uploads is configurable using the `max_concurrency`
 
-         parameter.
 
-         Note: this method only supports `asyncio` or `trio` as the backing async
 
-         runtime.
 
-         """
 
-         uploaded_files: list[FileObject] = []
 
-         async_library = sniffio.current_async_library()
 
-         if async_library == "asyncio":
 
-             async def asyncio_upload_file(semaphore: asyncio.Semaphore, file: FileTypes) -> None:
 
-                 async with semaphore:
 
-                     file_obj = await self._client.files.create(
 
-                         file=file,
 
-                         purpose="assistants",
 
-                     )
 
-                     uploaded_files.append(file_obj)
 
-             semaphore = asyncio.Semaphore(max_concurrency)
 
-             tasks = [asyncio_upload_file(semaphore, file) for file in files]
 
-             await asyncio.gather(*tasks)
 
-         elif async_library == "trio":
 
-             # We only import if the library is being used.
 
-             # We support Python 3.7 so are using an older version of trio that does not have type information
 
-             import trio  # type: ignore # pyright: ignore[reportMissingTypeStubs]
 
-             async def trio_upload_file(limiter: trio.CapacityLimiter, file: FileTypes) -> None:
 
-                 async with limiter:
 
-                     file_obj = await self._client.files.create(
 
-                         file=file,
 
-                         purpose="assistants",
 
-                     )
 
-                     uploaded_files.append(file_obj)
 
-             limiter = trio.CapacityLimiter(max_concurrency)
 
-             async with trio.open_nursery() as nursery:
 
-                 for file in files:
 
-                     nursery.start_soon(trio_upload_file, limiter, file)  # pyright: ignore [reportUnknownMemberType]
 
-         else:
 
-             raise RuntimeError(
 
-                 f"Async runtime {async_library} is not supported yet. Only asyncio or trio is supported",
 
-             )
 
-         batch = await self.create_and_poll(
 
-             vector_store_id=vector_store_id,
 
-             file_ids=[*file_ids, *(f.id for f in uploaded_files)],
 
-             poll_interval_ms=poll_interval_ms,
 
-             chunking_strategy=chunking_strategy,
 
-         )
 
-         return batch
 
- class FileBatchesWithRawResponse:
 
-     def __init__(self, file_batches: FileBatches) -> None:
 
-         self._file_batches = file_batches
 
-         self.create = _legacy_response.to_raw_response_wrapper(
 
-             file_batches.create,
 
-         )
 
-         self.retrieve = _legacy_response.to_raw_response_wrapper(
 
-             file_batches.retrieve,
 
-         )
 
-         self.cancel = _legacy_response.to_raw_response_wrapper(
 
-             file_batches.cancel,
 
-         )
 
-         self.list_files = _legacy_response.to_raw_response_wrapper(
 
-             file_batches.list_files,
 
-         )
 
- class AsyncFileBatchesWithRawResponse:
 
-     def __init__(self, file_batches: AsyncFileBatches) -> None:
 
-         self._file_batches = file_batches
 
-         self.create = _legacy_response.async_to_raw_response_wrapper(
 
-             file_batches.create,
 
-         )
 
-         self.retrieve = _legacy_response.async_to_raw_response_wrapper(
 
-             file_batches.retrieve,
 
-         )
 
-         self.cancel = _legacy_response.async_to_raw_response_wrapper(
 
-             file_batches.cancel,
 
-         )
 
-         self.list_files = _legacy_response.async_to_raw_response_wrapper(
 
-             file_batches.list_files,
 
-         )
 
- class FileBatchesWithStreamingResponse:
 
-     def __init__(self, file_batches: FileBatches) -> None:
 
-         self._file_batches = file_batches
 
-         self.create = to_streamed_response_wrapper(
 
-             file_batches.create,
 
-         )
 
-         self.retrieve = to_streamed_response_wrapper(
 
-             file_batches.retrieve,
 
-         )
 
-         self.cancel = to_streamed_response_wrapper(
 
-             file_batches.cancel,
 
-         )
 
-         self.list_files = to_streamed_response_wrapper(
 
-             file_batches.list_files,
 
-         )
 
- class AsyncFileBatchesWithStreamingResponse:
 
-     def __init__(self, file_batches: AsyncFileBatches) -> None:
 
-         self._file_batches = file_batches
 
-         self.create = async_to_streamed_response_wrapper(
 
-             file_batches.create,
 
-         )
 
-         self.retrieve = async_to_streamed_response_wrapper(
 
-             file_batches.retrieve,
 
-         )
 
-         self.cancel = async_to_streamed_response_wrapper(
 
-             file_batches.cancel,
 
-         )
 
-         self.list_files = async_to_streamed_response_wrapper(
 
-             file_batches.list_files,
 
-         )
 
 
  |