| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785 | # File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.from __future__ import annotationsimport asynciofrom typing import List, Iterablefrom typing_extensions import Literalfrom concurrent.futures import Future, ThreadPoolExecutor, as_completedimport httpximport sniffiofrom .... import _legacy_responsefrom ....types import FileObjectfrom ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypesfrom ...._utils import (    is_given,    maybe_transform,    async_maybe_transform,)from ...._compat import cached_propertyfrom ...._resource import SyncAPIResource, AsyncAPIResourcefrom ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapperfrom ....pagination import SyncCursorPage, AsyncCursorPagefrom ....types.beta import FileChunkingStrategyParamfrom ...._base_client import AsyncPaginator, make_request_optionsfrom ....types.beta.vector_stores import file_batch_create_params, file_batch_list_files_paramsfrom ....types.beta.file_chunking_strategy_param import FileChunkingStrategyParamfrom ....types.beta.vector_stores.vector_store_file import VectorStoreFilefrom ....types.beta.vector_stores.vector_store_file_batch import VectorStoreFileBatch__all__ = ["FileBatches", "AsyncFileBatches"]class FileBatches(SyncAPIResource):    @cached_property    def with_raw_response(self) -> FileBatchesWithRawResponse:        """        This property can be used as a prefix for any HTTP method call to return        the raw response object instead of the parsed content.        For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers        """        return FileBatchesWithRawResponse(self)    @cached_property    def with_streaming_response(self) -> FileBatchesWithStreamingResponse:        """        An alternative to `.with_raw_response` that doesn't eagerly read the response body.        For more information, see https://www.github.com/openai/openai-python#with_streaming_response        """        return FileBatchesWithStreamingResponse(self)    def create(        self,        vector_store_id: str,        *,        file_ids: List[str],        chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,        # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.        # The extra values given here take precedence over values defined on the client or passed to this method.        extra_headers: Headers | None = None,        extra_query: Query | None = None,        extra_body: Body | None = None,        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,    ) -> VectorStoreFileBatch:        """        Create a vector store file batch.        Args:          file_ids: A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that              the vector store should use. Useful for tools like `file_search` that can access              files.          chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto`              strategy. Only applicable if `file_ids` is non-empty.          extra_headers: Send extra headers          extra_query: Add additional query parameters to the request          extra_body: Add additional JSON properties to the request          timeout: Override the client-level default timeout for this request, in seconds        """        if not vector_store_id:            raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")        extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}        return self._post(            f"/vector_stores/{vector_store_id}/file_batches",            body=maybe_transform(                {                    "file_ids": file_ids,                    "chunking_strategy": chunking_strategy,                },                file_batch_create_params.FileBatchCreateParams,            ),            options=make_request_options(                extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout            ),            cast_to=VectorStoreFileBatch,        )    def retrieve(        self,        batch_id: str,        *,        vector_store_id: str,        # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.        # The extra values given here take precedence over values defined on the client or passed to this method.        extra_headers: Headers | None = None,        extra_query: Query | None = None,        extra_body: Body | None = None,        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,    ) -> VectorStoreFileBatch:        """        Retrieves a vector store file batch.        Args:          extra_headers: Send extra headers          extra_query: Add additional query parameters to the request          extra_body: Add additional JSON properties to the request          timeout: Override the client-level default timeout for this request, in seconds        """        if not vector_store_id:            raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")        if not batch_id:            raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")        extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}        return self._get(            f"/vector_stores/{vector_store_id}/file_batches/{batch_id}",            options=make_request_options(                extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout            ),            cast_to=VectorStoreFileBatch,        )    def cancel(        self,        batch_id: str,        *,        vector_store_id: str,        # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.        # The extra values given here take precedence over values defined on the client or passed to this method.        extra_headers: Headers | None = None,        extra_query: Query | None = None,        extra_body: Body | None = None,        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,    ) -> VectorStoreFileBatch:        """Cancel a vector store file batch.        This attempts to cancel the processing of        files in this batch as soon as possible.        Args:          extra_headers: Send extra headers          extra_query: Add additional query parameters to the request          extra_body: Add additional JSON properties to the request          timeout: Override the client-level default timeout for this request, in seconds        """        if not vector_store_id:            raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")        if not batch_id:            raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")        extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}        return self._post(            f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel",            options=make_request_options(                extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout            ),            cast_to=VectorStoreFileBatch,        )    def create_and_poll(        self,        vector_store_id: str,        *,        file_ids: List[str],        poll_interval_ms: int | NotGiven = NOT_GIVEN,        chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,    ) -> VectorStoreFileBatch:        """Create a vector store batch and poll until all files have been processed."""        batch = self.create(            vector_store_id=vector_store_id,            file_ids=file_ids,            chunking_strategy=chunking_strategy,        )        # TODO: don't poll unless necessary??        return self.poll(            batch.id,            vector_store_id=vector_store_id,            poll_interval_ms=poll_interval_ms,        )    def list_files(        self,        batch_id: str,        *,        vector_store_id: str,        after: str | NotGiven = NOT_GIVEN,        before: str | NotGiven = NOT_GIVEN,        filter: Literal["in_progress", "completed", "failed", "cancelled"] | NotGiven = NOT_GIVEN,        limit: int | NotGiven = NOT_GIVEN,        order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,        # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.        # The extra values given here take precedence over values defined on the client or passed to this method.        extra_headers: Headers | None = None,        extra_query: Query | None = None,        extra_body: Body | None = None,        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,    ) -> SyncCursorPage[VectorStoreFile]:        """        Returns a list of vector store files in a batch.        Args:          after: A cursor for use in pagination. `after` is an object ID that defines your place              in the list. For instance, if you make a list request and receive 100 objects,              ending with obj_foo, your subsequent call can include after=obj_foo in order to              fetch the next page of the list.          before: A cursor for use in pagination. `before` is an object ID that defines your place              in the list. For instance, if you make a list request and receive 100 objects,              starting with obj_foo, your subsequent call can include before=obj_foo in order              to fetch the previous page of the list.          filter: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`.          limit: A limit on the number of objects to be returned. Limit can range between 1 and              100, and the default is 20.          order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending              order and `desc` for descending order.          extra_headers: Send extra headers          extra_query: Add additional query parameters to the request          extra_body: Add additional JSON properties to the request          timeout: Override the client-level default timeout for this request, in seconds        """        if not vector_store_id:            raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")        if not batch_id:            raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")        extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}        return self._get_api_list(            f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/files",            page=SyncCursorPage[VectorStoreFile],            options=make_request_options(                extra_headers=extra_headers,                extra_query=extra_query,                extra_body=extra_body,                timeout=timeout,                query=maybe_transform(                    {                        "after": after,                        "before": before,                        "filter": filter,                        "limit": limit,                        "order": order,                    },                    file_batch_list_files_params.FileBatchListFilesParams,                ),            ),            model=VectorStoreFile,        )    def poll(        self,        batch_id: str,        *,        vector_store_id: str,        poll_interval_ms: int | NotGiven = NOT_GIVEN,    ) -> VectorStoreFileBatch:        """Wait for the given file batch to be processed.        Note: this will return even if one of the files failed to process, you need to        check batch.file_counts.failed_count to handle this case.        """        headers: dict[str, str] = {"X-Stainless-Poll-Helper": "true"}        if is_given(poll_interval_ms):            headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms)        while True:            response = self.with_raw_response.retrieve(                batch_id,                vector_store_id=vector_store_id,                extra_headers=headers,            )            batch = response.parse()            if batch.file_counts.in_progress > 0:                if not is_given(poll_interval_ms):                    from_header = response.headers.get("openai-poll-after-ms")                    if from_header is not None:                        poll_interval_ms = int(from_header)                    else:                        poll_interval_ms = 1000                self._sleep(poll_interval_ms / 1000)                continue            return batch    def upload_and_poll(        self,        vector_store_id: str,        *,        files: Iterable[FileTypes],        max_concurrency: int = 5,        file_ids: List[str] = [],        poll_interval_ms: int | NotGiven = NOT_GIVEN,        chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,    ) -> VectorStoreFileBatch:        """Uploads the given files concurrently and then creates a vector store file batch.        If you've already uploaded certain files that you want to include in this batch        then you can pass their IDs through the `file_ids` argument.        By default, if any file upload fails then an exception will be eagerly raised.        The number of concurrency uploads is configurable using the `max_concurrency`        parameter.        Note: this method only supports `asyncio` or `trio` as the backing async        runtime.        """        results: list[FileObject] = []        with ThreadPoolExecutor(max_workers=max_concurrency) as executor:            futures: list[Future[FileObject]] = [                executor.submit(                    self._client.files.create,                    file=file,                    purpose="assistants",                )                for file in files            ]        for future in as_completed(futures):            exc = future.exception()            if exc:                raise exc            results.append(future.result())        batch = self.create_and_poll(            vector_store_id=vector_store_id,            file_ids=[*file_ids, *(f.id for f in results)],            poll_interval_ms=poll_interval_ms,            chunking_strategy=chunking_strategy,        )        return batchclass AsyncFileBatches(AsyncAPIResource):    @cached_property    def with_raw_response(self) -> AsyncFileBatchesWithRawResponse:        """        This property can be used as a prefix for any HTTP method call to return        the raw response object instead of the parsed content.        For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers        """        return AsyncFileBatchesWithRawResponse(self)    @cached_property    def with_streaming_response(self) -> AsyncFileBatchesWithStreamingResponse:        """        An alternative to `.with_raw_response` that doesn't eagerly read the response body.        For more information, see https://www.github.com/openai/openai-python#with_streaming_response        """        return AsyncFileBatchesWithStreamingResponse(self)    async def create(        self,        vector_store_id: str,        *,        file_ids: List[str],        chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,        # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.        # The extra values given here take precedence over values defined on the client or passed to this method.        extra_headers: Headers | None = None,        extra_query: Query | None = None,        extra_body: Body | None = None,        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,    ) -> VectorStoreFileBatch:        """        Create a vector store file batch.        Args:          file_ids: A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that              the vector store should use. Useful for tools like `file_search` that can access              files.          chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto`              strategy. Only applicable if `file_ids` is non-empty.          extra_headers: Send extra headers          extra_query: Add additional query parameters to the request          extra_body: Add additional JSON properties to the request          timeout: Override the client-level default timeout for this request, in seconds        """        if not vector_store_id:            raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")        extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}        return await self._post(            f"/vector_stores/{vector_store_id}/file_batches",            body=await async_maybe_transform(                {                    "file_ids": file_ids,                    "chunking_strategy": chunking_strategy,                },                file_batch_create_params.FileBatchCreateParams,            ),            options=make_request_options(                extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout            ),            cast_to=VectorStoreFileBatch,        )    async def retrieve(        self,        batch_id: str,        *,        vector_store_id: str,        # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.        # The extra values given here take precedence over values defined on the client or passed to this method.        extra_headers: Headers | None = None,        extra_query: Query | None = None,        extra_body: Body | None = None,        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,    ) -> VectorStoreFileBatch:        """        Retrieves a vector store file batch.        Args:          extra_headers: Send extra headers          extra_query: Add additional query parameters to the request          extra_body: Add additional JSON properties to the request          timeout: Override the client-level default timeout for this request, in seconds        """        if not vector_store_id:            raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")        if not batch_id:            raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")        extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}        return await self._get(            f"/vector_stores/{vector_store_id}/file_batches/{batch_id}",            options=make_request_options(                extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout            ),            cast_to=VectorStoreFileBatch,        )    async def cancel(        self,        batch_id: str,        *,        vector_store_id: str,        # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.        # The extra values given here take precedence over values defined on the client or passed to this method.        extra_headers: Headers | None = None,        extra_query: Query | None = None,        extra_body: Body | None = None,        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,    ) -> VectorStoreFileBatch:        """Cancel a vector store file batch.        This attempts to cancel the processing of        files in this batch as soon as possible.        Args:          extra_headers: Send extra headers          extra_query: Add additional query parameters to the request          extra_body: Add additional JSON properties to the request          timeout: Override the client-level default timeout for this request, in seconds        """        if not vector_store_id:            raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")        if not batch_id:            raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")        extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}        return await self._post(            f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel",            options=make_request_options(                extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout            ),            cast_to=VectorStoreFileBatch,        )    async def create_and_poll(        self,        vector_store_id: str,        *,        file_ids: List[str],        poll_interval_ms: int | NotGiven = NOT_GIVEN,        chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,    ) -> VectorStoreFileBatch:        """Create a vector store batch and poll until all files have been processed."""        batch = await self.create(            vector_store_id=vector_store_id,            file_ids=file_ids,            chunking_strategy=chunking_strategy,        )        # TODO: don't poll unless necessary??        return await self.poll(            batch.id,            vector_store_id=vector_store_id,            poll_interval_ms=poll_interval_ms,        )    def list_files(        self,        batch_id: str,        *,        vector_store_id: str,        after: str | NotGiven = NOT_GIVEN,        before: str | NotGiven = NOT_GIVEN,        filter: Literal["in_progress", "completed", "failed", "cancelled"] | NotGiven = NOT_GIVEN,        limit: int | NotGiven = NOT_GIVEN,        order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN,        # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.        # The extra values given here take precedence over values defined on the client or passed to this method.        extra_headers: Headers | None = None,        extra_query: Query | None = None,        extra_body: Body | None = None,        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,    ) -> AsyncPaginator[VectorStoreFile, AsyncCursorPage[VectorStoreFile]]:        """        Returns a list of vector store files in a batch.        Args:          after: A cursor for use in pagination. `after` is an object ID that defines your place              in the list. For instance, if you make a list request and receive 100 objects,              ending with obj_foo, your subsequent call can include after=obj_foo in order to              fetch the next page of the list.          before: A cursor for use in pagination. `before` is an object ID that defines your place              in the list. For instance, if you make a list request and receive 100 objects,              starting with obj_foo, your subsequent call can include before=obj_foo in order              to fetch the previous page of the list.          filter: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`.          limit: A limit on the number of objects to be returned. Limit can range between 1 and              100, and the default is 20.          order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending              order and `desc` for descending order.          extra_headers: Send extra headers          extra_query: Add additional query parameters to the request          extra_body: Add additional JSON properties to the request          timeout: Override the client-level default timeout for this request, in seconds        """        if not vector_store_id:            raise ValueError(f"Expected a non-empty value for `vector_store_id` but received {vector_store_id!r}")        if not batch_id:            raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")        extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}        return self._get_api_list(            f"/vector_stores/{vector_store_id}/file_batches/{batch_id}/files",            page=AsyncCursorPage[VectorStoreFile],            options=make_request_options(                extra_headers=extra_headers,                extra_query=extra_query,                extra_body=extra_body,                timeout=timeout,                query=maybe_transform(                    {                        "after": after,                        "before": before,                        "filter": filter,                        "limit": limit,                        "order": order,                    },                    file_batch_list_files_params.FileBatchListFilesParams,                ),            ),            model=VectorStoreFile,        )    async def poll(        self,        batch_id: str,        *,        vector_store_id: str,        poll_interval_ms: int | NotGiven = NOT_GIVEN,    ) -> VectorStoreFileBatch:        """Wait for the given file batch to be processed.        Note: this will return even if one of the files failed to process, you need to        check batch.file_counts.failed_count to handle this case.        """        headers: dict[str, str] = {"X-Stainless-Poll-Helper": "true"}        if is_given(poll_interval_ms):            headers["X-Stainless-Custom-Poll-Interval"] = str(poll_interval_ms)        while True:            response = await self.with_raw_response.retrieve(                batch_id,                vector_store_id=vector_store_id,                extra_headers=headers,            )            batch = response.parse()            if batch.file_counts.in_progress > 0:                if not is_given(poll_interval_ms):                    from_header = response.headers.get("openai-poll-after-ms")                    if from_header is not None:                        poll_interval_ms = int(from_header)                    else:                        poll_interval_ms = 1000                await self._sleep(poll_interval_ms / 1000)                continue            return batch    async def upload_and_poll(        self,        vector_store_id: str,        *,        files: Iterable[FileTypes],        max_concurrency: int = 5,        file_ids: List[str] = [],        poll_interval_ms: int | NotGiven = NOT_GIVEN,        chunking_strategy: FileChunkingStrategyParam | NotGiven = NOT_GIVEN,    ) -> VectorStoreFileBatch:        """Uploads the given files concurrently and then creates a vector store file batch.        If you've already uploaded certain files that you want to include in this batch        then you can pass their IDs through the `file_ids` argument.        By default, if any file upload fails then an exception will be eagerly raised.        The number of concurrency uploads is configurable using the `max_concurrency`        parameter.        Note: this method only supports `asyncio` or `trio` as the backing async        runtime.        """        uploaded_files: list[FileObject] = []        async_library = sniffio.current_async_library()        if async_library == "asyncio":            async def asyncio_upload_file(semaphore: asyncio.Semaphore, file: FileTypes) -> None:                async with semaphore:                    file_obj = await self._client.files.create(                        file=file,                        purpose="assistants",                    )                    uploaded_files.append(file_obj)            semaphore = asyncio.Semaphore(max_concurrency)            tasks = [asyncio_upload_file(semaphore, file) for file in files]            await asyncio.gather(*tasks)        elif async_library == "trio":            # We only import if the library is being used.            # We support Python 3.7 so are using an older version of trio that does not have type information            import trio  # type: ignore # pyright: ignore[reportMissingTypeStubs]            async def trio_upload_file(limiter: trio.CapacityLimiter, file: FileTypes) -> None:                async with limiter:                    file_obj = await self._client.files.create(                        file=file,                        purpose="assistants",                    )                    uploaded_files.append(file_obj)            limiter = trio.CapacityLimiter(max_concurrency)            async with trio.open_nursery() as nursery:                for file in files:                    nursery.start_soon(trio_upload_file, limiter, file)  # pyright: ignore [reportUnknownMemberType]        else:            raise RuntimeError(                f"Async runtime {async_library} is not supported yet. Only asyncio or trio is supported",            )        batch = await self.create_and_poll(            vector_store_id=vector_store_id,            file_ids=[*file_ids, *(f.id for f in uploaded_files)],            poll_interval_ms=poll_interval_ms,            chunking_strategy=chunking_strategy,        )        return batchclass FileBatchesWithRawResponse:    def __init__(self, file_batches: FileBatches) -> None:        self._file_batches = file_batches        self.create = _legacy_response.to_raw_response_wrapper(            file_batches.create,        )        self.retrieve = _legacy_response.to_raw_response_wrapper(            file_batches.retrieve,        )        self.cancel = _legacy_response.to_raw_response_wrapper(            file_batches.cancel,        )        self.list_files = _legacy_response.to_raw_response_wrapper(            file_batches.list_files,        )class AsyncFileBatchesWithRawResponse:    def __init__(self, file_batches: AsyncFileBatches) -> None:        self._file_batches = file_batches        self.create = _legacy_response.async_to_raw_response_wrapper(            file_batches.create,        )        self.retrieve = _legacy_response.async_to_raw_response_wrapper(            file_batches.retrieve,        )        self.cancel = _legacy_response.async_to_raw_response_wrapper(            file_batches.cancel,        )        self.list_files = _legacy_response.async_to_raw_response_wrapper(            file_batches.list_files,        )class FileBatchesWithStreamingResponse:    def __init__(self, file_batches: FileBatches) -> None:        self._file_batches = file_batches        self.create = to_streamed_response_wrapper(            file_batches.create,        )        self.retrieve = to_streamed_response_wrapper(            file_batches.retrieve,        )        self.cancel = to_streamed_response_wrapper(            file_batches.cancel,        )        self.list_files = to_streamed_response_wrapper(            file_batches.list_files,        )class AsyncFileBatchesWithStreamingResponse:    def __init__(self, file_batches: AsyncFileBatches) -> None:        self._file_batches = file_batches        self.create = async_to_streamed_response_wrapper(            file_batches.create,        )        self.retrieve = async_to_streamed_response_wrapper(            file_batches.retrieve,        )        self.cancel = async_to_streamed_response_wrapper(            file_batches.cancel,        )        self.list_files = async_to_streamed_response_wrapper(            file_batches.list_files,        )
 |