thread_runner.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376
  1. from functools import partial
  2. import logging
  3. from typing import List
  4. from concurrent.futures import Executor
  5. from sqlalchemy.orm import Session
  6. from app.models.token_relation import RelationType
  7. from config.config import settings
  8. from config.llm import llm_settings, tool_settings
  9. from app.core.runner.llm_backend import LLMBackend
  10. from app.core.runner.llm_callback_handler import LLMCallbackHandler
  11. from app.core.runner.memory import Memory, find_memory
  12. from app.core.runner.pub_handler import StreamEventHandler
  13. from app.core.runner.utils import message_util as msg_util
  14. from app.core.runner.utils.tool_call_util import (
  15. tool_call_recognize,
  16. internal_tool_call_invoke,
  17. tool_call_request,
  18. tool_call_id,
  19. tool_call_output,
  20. )
  21. from app.core.tools import find_tools, BaseTool
  22. from app.libs.thread_executor import get_executor_for_config, run_with_executor
  23. from app.models.message import Message, MessageUpdate
  24. from app.models.run import Run
  25. from app.models.run_step import RunStep
  26. from app.models.token_relation import RelationType
  27. from app.services.assistant.assistant import AssistantService
  28. from app.services.file.file import FileService
  29. from app.services.message.message import MessageService
  30. from app.services.run.run import RunService
  31. from app.services.run.run_step import RunStepService
  32. from app.services.token.token import TokenService
  33. from app.services.token.token_relation import TokenRelationService
  34. class ThreadRunner:
  35. """
  36. ThreadRunner 封装 run 的执行逻辑
  37. """
  38. tool_executor: Executor = get_executor_for_config(
  39. tool_settings.TOOL_WORKER_NUM, "tool_worker_"
  40. )
  41. def __init__(self, run_id: str, session: Session, stream: bool = False):
  42. self.run_id = run_id
  43. self.session = session
  44. self.stream = stream
  45. self.max_step = llm_settings.LLM_MAX_STEP
  46. self.event_handler: StreamEventHandler = None
  47. def run(self):
  48. """
  49. 完成一次 run 的执行,基本步骤
  50. 1. 初始化,获取 run 以及相关 tools, 构造 system instructions;
  51. 2. 开始循环,查询已有 run step, 进行 chat message 生成;
  52. 3. 调用 llm 并解析返回结果;
  53. 4. 根据返回结果,生成新的 run step(tool calls 处理) 或者 message
  54. """
  55. # TODO: 重构,将 run 的状态变更逻辑放到 RunService 中
  56. run = RunService.get_run_sync(session=self.session, run_id=self.run_id)
  57. self.event_handler = StreamEventHandler(
  58. run_id=self.run_id, is_stream=self.stream
  59. )
  60. run = RunService.to_in_progress(session=self.session, run_id=self.run_id)
  61. self.event_handler.pub_run_in_progress(run)
  62. logging.info("processing ThreadRunner task, run_id: %s", self.run_id)
  63. # get memory from assistant metadata
  64. # format likes {"memory": {"type": "window", "window_size": 20, "max_token_size": 4000}}
  65. ast = AssistantService.get_assistant_sync(
  66. session=self.session, assistant_id=run.assistant_id
  67. )
  68. metadata = ast.metadata_ or {}
  69. memory = find_memory(metadata.get("memory", {}))
  70. instructions = (
  71. [run.instructions or ""] if run.instructions else [ast.instructions or ""]
  72. )
  73. tools = find_tools(run, self.session)
  74. for tool in tools:
  75. tool.configure(session=self.session, run=run)
  76. instruction_supplement = tool.instruction_supplement()
  77. if instruction_supplement:
  78. instructions += [instruction_supplement or ""]
  79. instruction = "\n".join(instructions)
  80. llm = self.__init_llm_backend(run.assistant_id)
  81. loop = True
  82. while loop:
  83. run_steps = RunStepService.get_run_step_list(
  84. session=self.session, run_id=self.run_id, thread_id=run.thread_id
  85. )
  86. loop = self.__run_step(llm, run, run_steps, instruction, tools, memory)
  87. # 任务结束
  88. self.event_handler.pub_run_completed(run)
  89. self.event_handler.pub_done()
  90. def __run_step(
  91. self,
  92. llm: LLMBackend,
  93. run: Run,
  94. run_steps: List[RunStep],
  95. instruction: str,
  96. tools: List[BaseTool],
  97. memory: Memory,
  98. ):
  99. """
  100. 执行 run step
  101. """
  102. logging.info("step %d is running", len(run_steps) + 1)
  103. assistant_system_message = [msg_util.system_message(instruction)]
  104. # 获取已有 message 上下文记录
  105. chat_messages = self.__generate_chat_messages(
  106. MessageService.get_message_list(
  107. session=self.session, thread_id=run.thread_id
  108. )
  109. )
  110. tool_call_messages = []
  111. for step in run_steps:
  112. if step.type == "tool_calls" and step.status == "completed":
  113. tool_call_messages += (
  114. self.__convert_assistant_tool_calls_to_chat_messages(step)
  115. )
  116. # memory
  117. messages = (
  118. assistant_system_message
  119. + memory.integrate_context(chat_messages)
  120. + tool_call_messages
  121. )
  122. logging.info("messages: run %s", run)
  123. response_stream = llm.run(
  124. messages=messages,
  125. model=run.model,
  126. tools=[tool.openai_function for tool in tools],
  127. tool_choice="auto" if len(run_steps) < self.max_step else "none",
  128. stream=True,
  129. stream_options=run.stream_options,
  130. extra_body=run.extra_body,
  131. temperature=run.temperature,
  132. top_p=run.top_p,
  133. response_format=run.response_format,
  134. )
  135. # create message callback
  136. create_message_callback = partial(
  137. MessageService.new_message,
  138. session=self.session,
  139. assistant_id=run.assistant_id,
  140. thread_id=run.thread_id,
  141. run_id=run.id,
  142. role="assistant",
  143. )
  144. # create 'message creation' run step callback
  145. def _create_message_creation_run_step(message_id):
  146. return RunStepService.new_run_step(
  147. session=self.session,
  148. type="message_creation",
  149. assistant_id=run.assistant_id,
  150. thread_id=run.thread_id,
  151. run_id=run.id,
  152. step_details={
  153. "type": "message_creation",
  154. "message_creation": {"message_id": message_id},
  155. },
  156. )
  157. llm_callback_handler = LLMCallbackHandler(
  158. run_id=run.id,
  159. on_step_create_func=_create_message_creation_run_step,
  160. on_message_create_func=create_message_callback,
  161. event_handler=self.event_handler,
  162. )
  163. response_msg = llm_callback_handler.handle_llm_response(response_stream)
  164. message_creation_run_step = llm_callback_handler.step
  165. print("444444444444444444444444455555555577777777777777777777777")
  166. logging.info("chat_response_message: %s", response_msg)
  167. if msg_util.is_tool_call(response_msg):
  168. # tool & tool_call definition dict
  169. tool_calls = [
  170. tool_call_recognize(tool_call, tools)
  171. for tool_call in response_msg.tool_calls
  172. ]
  173. # new run step for tool calls
  174. new_run_step = RunStepService.new_run_step(
  175. session=self.session,
  176. type="tool_calls",
  177. assistant_id=run.assistant_id,
  178. thread_id=run.thread_id,
  179. run_id=run.id,
  180. step_details={
  181. "type": "tool_calls",
  182. "tool_calls": [tool_call_dict for _, tool_call_dict in tool_calls],
  183. },
  184. )
  185. self.event_handler.pub_run_step_created(new_run_step)
  186. self.event_handler.pub_run_step_in_progress(new_run_step)
  187. internal_tool_calls = list(
  188. filter(lambda _tool_calls: _tool_calls[0] is not None, tool_calls)
  189. )
  190. external_tool_call_dict = [
  191. tool_call_dict for tool, tool_call_dict in tool_calls if tool is None
  192. ]
  193. # 为减少线程同步逻辑,依次处理内/外 tool_call 调用
  194. if internal_tool_calls:
  195. try:
  196. print(
  197. "==========================internal_tool_callsinternal_tool_callsinternal_tool_calls"
  198. )
  199. print(internal_tool_calls)
  200. ## 线程执行有问题 可以改成异步, 这里如果是filesearch要确定只执行一次
  201. tool_calls_with_outputs = run_with_executor(
  202. executor=ThreadRunner.tool_executor,
  203. func=internal_tool_call_invoke,
  204. tasks=internal_tool_calls,
  205. timeout=tool_settings.TOOL_WORKER_EXECUTION_TIMEOUT,
  206. )
  207. """
  208. tool_calls_with_outputs = internal_tool_call_invoke(
  209. internal_tool_calls
  210. )
  211. """
  212. new_run_step = RunStepService.update_step_details(
  213. session=self.session,
  214. run_step_id=new_run_step.id,
  215. step_details={
  216. "type": "tool_calls",
  217. "tool_calls": tool_calls_with_outputs,
  218. },
  219. completed=not external_tool_call_dict,
  220. )
  221. except Exception as e:
  222. RunStepService.to_failed(
  223. session=self.session, run_step_id=new_run_step.id, last_error=e
  224. )
  225. raise e
  226. print(
  227. "aaaaaaaaaaaaaaa===============================================================8888888888888888888888888"
  228. )
  229. print(external_tool_call_dict)
  230. if external_tool_call_dict:
  231. # run 设置为 action required,等待业务完成更新并再次拉起
  232. run = RunService.to_requires_action(
  233. session=self.session,
  234. run_id=run.id,
  235. required_action={
  236. "type": "submit_tool_outputs",
  237. "submit_tool_outputs": {"tool_calls": external_tool_call_dict},
  238. },
  239. )
  240. self.event_handler.pub_run_step_delta(
  241. step_id=new_run_step.id,
  242. step_details={
  243. "type": "tool_calls",
  244. "tool_calls": external_tool_call_dict,
  245. },
  246. )
  247. print(run)
  248. self.event_handler.pub_run_requires_action(run)
  249. else:
  250. self.event_handler.pub_run_step_completed(new_run_step)
  251. return True
  252. else:
  253. # 无 tool call 信息,message 生成结束,更新状态
  254. new_message = MessageService.modify_message_sync(
  255. session=self.session,
  256. thread_id=run.thread_id,
  257. message_id=llm_callback_handler.message.id,
  258. body=MessageUpdate(content=response_msg.content),
  259. )
  260. self.event_handler.pub_message_completed(new_message)
  261. new_step = RunStepService.update_step_details(
  262. session=self.session,
  263. run_step_id=message_creation_run_step.id,
  264. step_details={
  265. "type": "message_creation",
  266. "message_creation": {"message_id": new_message.id},
  267. },
  268. completed=True,
  269. )
  270. RunService.to_completed(session=self.session, run_id=run.id)
  271. self.event_handler.pub_run_step_completed(new_step)
  272. return False
  273. def __init_llm_backend(self, assistant_id):
  274. if settings.AUTH_ENABLE:
  275. # init llm backend with token id
  276. token_id = TokenRelationService.get_token_id_by_relation(
  277. session=self.session,
  278. relation_type=RelationType.Assistant,
  279. relation_id=assistant_id,
  280. )
  281. token = TokenService.get_token_by_id(self.session, token_id)
  282. return LLMBackend(base_url=token.llm_base_url, api_key=token.llm_api_key)
  283. else:
  284. # init llm backend with llm settings
  285. return LLMBackend(
  286. base_url=llm_settings.OPENAI_API_BASE,
  287. api_key=llm_settings.OPENAI_API_KEY,
  288. )
  289. def __generate_chat_messages(self, messages: List[Message]):
  290. """
  291. 根据历史信息生成 chat message
  292. """
  293. chat_messages = []
  294. for message in messages:
  295. role = message.role
  296. if role == "user":
  297. message_content = []
  298. if message.file_ids:
  299. files = FileService.get_file_list_by_ids(
  300. session=self.session, file_ids=message.file_ids
  301. )
  302. for file in files:
  303. chat_messages.append(
  304. msg_util.new_message(
  305. role,
  306. f'The file "{file.filename}" can be used as a reference',
  307. )
  308. )
  309. else:
  310. for content in message.content:
  311. if content["type"] == "text":
  312. message_content.append(
  313. {"type": "text", "text": content["text"]["value"]}
  314. )
  315. elif content["type"] == "image_url":
  316. message_content.append(content)
  317. chat_messages.append(msg_util.new_message(role, message_content))
  318. elif role == "assistant":
  319. message_content = ""
  320. for content in message.content:
  321. if content["type"] == "text":
  322. message_content += content["text"]["value"]
  323. chat_messages.append(msg_util.new_message(role, message_content))
  324. return chat_messages
  325. def __convert_assistant_tool_calls_to_chat_messages(self, run_step: RunStep):
  326. """
  327. 根据 run step 执行结果生成 message 信息
  328. 每个 tool call run step 包含两部分,调用与结果(结果可能为多个信息)
  329. """
  330. tool_calls = run_step.step_details["tool_calls"]
  331. tool_call_requests = [
  332. msg_util.tool_calls(
  333. [tool_call_request(tool_call) for tool_call in tool_calls]
  334. )
  335. ]
  336. tool_call_outputs = [
  337. msg_util.tool_call_result(
  338. tool_call_id(tool_call), tool_call_output(tool_call)
  339. )
  340. for tool_call in tool_calls
  341. ]
  342. return tool_call_requests + tool_call_outputs