thread_runner.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402
  1. from functools import partial
  2. import logging
  3. from typing import List
  4. from concurrent.futures import Executor
  5. from sqlalchemy.orm import Session
  6. from app.models.token_relation import RelationType
  7. from config.config import settings
  8. from config.llm import llm_settings, tool_settings
  9. from app.core.runner.llm_backend import LLMBackend
  10. from app.core.runner.llm_callback_handler import LLMCallbackHandler
  11. from app.core.runner.memory import Memory, find_memory
  12. from app.core.runner.pub_handler import StreamEventHandler
  13. from app.core.runner.utils import message_util as msg_util
  14. from app.core.runner.utils.tool_call_util import (
  15. tool_call_recognize,
  16. internal_tool_call_invoke,
  17. tool_call_request,
  18. tool_call_id,
  19. tool_call_output,
  20. )
  21. from app.core.tools import find_tools, BaseTool
  22. from app.libs.thread_executor import get_executor_for_config, run_with_executor
  23. from app.models.message import Message, MessageUpdate
  24. from app.models.run import Run
  25. from app.models.run_step import RunStep
  26. from app.models.token_relation import RelationType
  27. from app.services.assistant.assistant import AssistantService
  28. from app.services.file.file import FileService
  29. from app.services.message.message import MessageService
  30. from app.services.run.run import RunService
  31. from app.services.run.run_step import RunStepService
  32. from app.services.token.token import TokenService
  33. from app.services.token.token_relation import TokenRelationService
  34. class ThreadRunner:
  35. """
  36. ThreadRunner 封装 run 的执行逻辑
  37. """
  38. tool_executor: Executor = get_executor_for_config(
  39. tool_settings.TOOL_WORKER_NUM, "tool_worker_"
  40. )
  41. def __init__(self, run_id: str, session: Session, stream: bool = False):
  42. self.run_id = run_id
  43. self.session = session
  44. self.stream = stream
  45. self.max_step = llm_settings.LLM_MAX_STEP
  46. self.event_handler: StreamEventHandler = None
  47. def run(self):
  48. """
  49. 完成一次 run 的执行,基本步骤
  50. 1. 初始化,获取 run 以及相关 tools, 构造 system instructions;
  51. 2. 开始循环,查询已有 run step, 进行 chat message 生成;
  52. 3. 调用 llm 并解析返回结果;
  53. 4. 根据返回结果,生成新的 run step(tool calls 处理) 或者 message
  54. """
  55. # TODO: 重构,将 run 的状态变更逻辑放到 RunService 中
  56. run = RunService.get_run_sync(session=self.session, run_id=self.run_id)
  57. self.event_handler = StreamEventHandler(
  58. run_id=self.run_id, is_stream=self.stream
  59. )
  60. run = RunService.to_in_progress(session=self.session, run_id=self.run_id)
  61. self.event_handler.pub_run_in_progress(run)
  62. logging.info("processing ThreadRunner task, run_id: %s", self.run_id)
  63. # get memory from assistant metadata
  64. # format likes {"memory": {"type": "window", "window_size": 20, "max_token_size": 4000}}
  65. ast = AssistantService.get_assistant_sync(
  66. session=self.session, assistant_id=run.assistant_id
  67. )
  68. metadata = ast.metadata_ or {}
  69. memory = find_memory(metadata.get("memory", {}))
  70. instructions = (
  71. [run.instructions or ""] if run.instructions else [ast.instructions or ""]
  72. )
  73. tools = find_tools(run, self.session)
  74. for tool in tools:
  75. tool.configure(session=self.session, run=run)
  76. instruction_supplement = tool.instruction_supplement()
  77. if instruction_supplement:
  78. instructions += [instruction_supplement or ""]
  79. instruction = "\n".join(instructions)
  80. llm = self.__init_llm_backend(run.assistant_id)
  81. loop = True
  82. while loop:
  83. print(
  84. "looplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooploop"
  85. )
  86. run_steps = RunStepService.get_run_step_list(
  87. session=self.session, run_id=self.run_id, thread_id=run.thread_id
  88. )
  89. loop = self.__run_step(llm, run, run_steps, instruction, tools, memory)
  90. # 任务结束
  91. self.event_handler.pub_run_completed(run)
  92. self.event_handler.pub_done()
  93. def __run_step(
  94. self,
  95. llm: LLMBackend,
  96. run: Run,
  97. run_steps: List[RunStep],
  98. instruction: str,
  99. tools: List[BaseTool],
  100. memory: Memory,
  101. ):
  102. """
  103. 执行 run step
  104. """
  105. logging.info("step %d is running", len(run_steps) + 1)
  106. assistant_system_message = [msg_util.system_message(instruction)]
  107. # 获取已有 message 上下文记录
  108. chat_messages = self.__generate_chat_messages(
  109. MessageService.get_message_list(
  110. session=self.session, thread_id=run.thread_id
  111. )
  112. )
  113. tool_call_messages = []
  114. for step in run_steps:
  115. if step.type == "tool_calls" and step.status == "completed":
  116. tool_call_messages += (
  117. self.__convert_assistant_tool_calls_to_chat_messages(step)
  118. )
  119. # tool_call_messages = tool_call_messages
  120. # memory
  121. messages = (
  122. assistant_system_message
  123. + memory.integrate_context(chat_messages)
  124. + tool_call_messages
  125. )
  126. logging.info("messages: run %s", run)
  127. logging.info(messages)
  128. logging.info(tools)
  129. response_stream = llm.run(
  130. messages=messages,
  131. model=run.model,
  132. tools=[tool.openai_function for tool in tools],
  133. tool_choice="auto" if len(run_steps) < self.max_step else "none",
  134. stream=True,
  135. stream_options=run.stream_options,
  136. extra_body=run.extra_body,
  137. temperature=run.temperature,
  138. top_p=run.top_p,
  139. response_format=run.response_format,
  140. )
  141. # create message callback
  142. create_message_callback = partial(
  143. MessageService.new_message,
  144. session=self.session,
  145. assistant_id=run.assistant_id,
  146. thread_id=run.thread_id,
  147. run_id=run.id,
  148. role="assistant",
  149. )
  150. # create 'message creation' run step callback
  151. def _create_message_creation_run_step(message_id):
  152. return RunStepService.new_run_step(
  153. session=self.session,
  154. type="message_creation",
  155. assistant_id=run.assistant_id,
  156. thread_id=run.thread_id,
  157. run_id=run.id,
  158. step_details={
  159. "type": "message_creation",
  160. "message_creation": {"message_id": message_id},
  161. },
  162. )
  163. llm_callback_handler = LLMCallbackHandler(
  164. run_id=run.id,
  165. on_step_create_func=_create_message_creation_run_step,
  166. on_message_create_func=create_message_callback,
  167. event_handler=self.event_handler,
  168. )
  169. response_msg = llm_callback_handler.handle_llm_response(response_stream)
  170. message_creation_run_step = llm_callback_handler.step
  171. print("444444444444444444444444455555555577777777777777777777777")
  172. logging.info("chat_response_message: %s", response_msg)
  173. if msg_util.is_tool_call(response_msg):
  174. # tool & tool_call definition dict
  175. tool_calls = [
  176. tool_call_recognize(tool_call, tools)
  177. for tool_call in response_msg.tool_calls
  178. ]
  179. # new run step for tool calls
  180. new_run_step = RunStepService.new_run_step(
  181. session=self.session,
  182. type="tool_calls",
  183. assistant_id=run.assistant_id,
  184. thread_id=run.thread_id,
  185. run_id=run.id,
  186. step_details={
  187. "type": "tool_calls",
  188. "tool_calls": [tool_call_dict for _, tool_call_dict in tool_calls],
  189. },
  190. )
  191. self.event_handler.pub_run_step_created(new_run_step)
  192. self.event_handler.pub_run_step_in_progress(new_run_step)
  193. internal_tool_calls = list(
  194. filter(lambda _tool_calls: _tool_calls[0] is not None, tool_calls)
  195. )
  196. """
  197. seen = set()
  198. internal_tool_calls = []
  199. for _tool_call in tool_calls:
  200. tool_obj = _tool_call[0]
  201. if tool_obj is not None and tool_obj not in seen:
  202. seen.add(tool_obj)
  203. internal_tool_calls.append(_tool_call)
  204. """
  205. external_tool_call_dict = [
  206. tool_call_dict for tool, tool_call_dict in tool_calls if tool is None
  207. ]
  208. # 为减少线程同步逻辑,依次处理内/外 tool_call 调用
  209. if internal_tool_calls:
  210. try:
  211. print(
  212. "==========================internal_tool_callsinternal_tool_callsinternal_tool_calls"
  213. )
  214. print(internal_tool_calls)
  215. ## 线程执行有问题 可以改成异步, 这里如果是filesearch要确定只执行一次
  216. tool_calls_with_outputs = run_with_executor(
  217. executor=ThreadRunner.tool_executor,
  218. func=internal_tool_call_invoke,
  219. tasks=internal_tool_calls,
  220. timeout=tool_settings.TOOL_WORKER_EXECUTION_TIMEOUT,
  221. )
  222. new_run_step = RunStepService.update_step_details(
  223. session=self.session,
  224. run_step_id=new_run_step.id,
  225. step_details={
  226. "type": "tool_calls",
  227. "tool_calls": tool_calls_with_outputs,
  228. },
  229. completed=not external_tool_call_dict,
  230. )
  231. except Exception as e:
  232. RunStepService.to_failed(
  233. session=self.session, run_step_id=new_run_step.id, last_error=e
  234. )
  235. raise e
  236. print(
  237. "aaaaaaaaaaaaaaa===============================================================8888888888888888888888888"
  238. )
  239. print(external_tool_call_dict)
  240. if external_tool_call_dict:
  241. # run 设置为 action required,等待业务完成更新并再次拉起
  242. run = RunService.to_requires_action(
  243. session=self.session,
  244. run_id=run.id,
  245. required_action={
  246. "type": "submit_tool_outputs",
  247. "submit_tool_outputs": {"tool_calls": external_tool_call_dict},
  248. },
  249. )
  250. self.event_handler.pub_run_step_delta(
  251. step_id=new_run_step.id,
  252. step_details={
  253. "type": "tool_calls",
  254. "tool_calls": external_tool_call_dict,
  255. },
  256. )
  257. print(run)
  258. self.event_handler.pub_run_requires_action(run)
  259. else:
  260. self.event_handler.pub_run_step_completed(new_run_step)
  261. return True
  262. else:
  263. # 无 tool call 信息,message 生成结束,更新状态
  264. new_message = MessageService.modify_message_sync(
  265. session=self.session,
  266. thread_id=run.thread_id,
  267. message_id=llm_callback_handler.message.id,
  268. body=MessageUpdate(content=response_msg.content),
  269. )
  270. self.event_handler.pub_message_completed(new_message)
  271. new_step = RunStepService.update_step_details(
  272. session=self.session,
  273. run_step_id=message_creation_run_step.id,
  274. step_details={
  275. "type": "message_creation",
  276. "message_creation": {"message_id": new_message.id},
  277. },
  278. completed=True,
  279. )
  280. RunService.to_completed(session=self.session, run_id=run.id)
  281. self.event_handler.pub_run_step_completed(new_step)
  282. return False
  283. def __init_llm_backend(self, assistant_id):
  284. if settings.AUTH_ENABLE:
  285. # init llm backend with token id
  286. token_id = TokenRelationService.get_token_id_by_relation(
  287. session=self.session,
  288. relation_type=RelationType.Assistant,
  289. relation_id=assistant_id,
  290. )
  291. print(
  292. "token_idtoken_idtoken_idtoken_idtoken_idtoken_idtoken_idtoken_idtoken_idtoken_idtoken_idtoken_id"
  293. )
  294. print(token_id)
  295. if not token_id:
  296. token = TokenService.get_token_by_id(self.session, token_id)
  297. return LLMBackend(
  298. base_url=token.llm_base_url, api_key=token.llm_api_key
  299. )
  300. else:
  301. token = {
  302. "llm_base_url": "https://onehub.cocorobo.cn/v1",
  303. "llm_api_key": "sk-vTqeBKDC2j6osbGt89A2202dAd1c4fE8B1D294388b569e54",
  304. }
  305. return LLMBackend(
  306. base_url=token.get("llm_base_url"), api_key=token.get("llm_api_key")
  307. )
  308. else:
  309. # init llm backend with llm settings
  310. return LLMBackend(
  311. base_url=llm_settings.OPENAI_API_BASE,
  312. api_key=llm_settings.OPENAI_API_KEY,
  313. )
  314. def __generate_chat_messages(self, messages: List[Message]):
  315. """
  316. 根据历史信息生成 chat message
  317. """
  318. chat_messages = []
  319. for message in messages:
  320. role = message.role
  321. if role == "user":
  322. message_content = []
  323. """
  324. if message.file_ids:
  325. files = FileService.get_file_list_by_ids(
  326. session=self.session, file_ids=message.file_ids
  327. )
  328. for file in files:
  329. chat_messages.append(
  330. msg_util.new_message(
  331. role,
  332. f'The file "{file.filename}" can be used as a reference',
  333. )
  334. )
  335. else:
  336. """
  337. for content in message.content:
  338. if content["type"] == "text":
  339. message_content.append(
  340. {"type": "text", "text": content["text"]["value"]}
  341. )
  342. elif content["type"] == "image_url":
  343. message_content.append(content)
  344. chat_messages.append(msg_util.new_message(role, message_content))
  345. elif role == "assistant":
  346. message_content = ""
  347. for content in message.content:
  348. if content["type"] == "text":
  349. message_content += content["text"]["value"]
  350. chat_messages.append(msg_util.new_message(role, message_content))
  351. return chat_messages ### 暂时只支持5条消息,后续正价token上限
  352. def __convert_assistant_tool_calls_to_chat_messages(self, run_step: RunStep):
  353. """
  354. 根据 run step 执行结果生成 message 信息
  355. 每个 tool call run step 包含两部分,调用与结果(结果可能为多个信息)
  356. """
  357. tool_calls = run_step.step_details["tool_calls"]
  358. tool_call_requests = [
  359. msg_util.tool_calls(
  360. [tool_call_request(tool_call) for tool_call in tool_calls]
  361. )
  362. ]
  363. tool_call_outputs = [
  364. msg_util.tool_call_result(
  365. tool_call_id(tool_call), tool_call_output(tool_call)
  366. )
  367. for tool_call in tool_calls
  368. ]
  369. return tool_call_requests + tool_call_outputs