thread_runner.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472
  1. from functools import partial
  2. import logging
  3. from typing import List
  4. from concurrent.futures import Executor
  5. from sqlalchemy.orm import Session
  6. from app.models.token_relation import RelationType
  7. from config.config import settings
  8. from config.llm import llm_settings, tool_settings
  9. from app.core.runner.llm_backend import LLMBackend
  10. from app.core.runner.llm_callback_handler import LLMCallbackHandler
  11. from app.core.runner.memory import Memory, find_memory
  12. from app.core.runner.pub_handler import StreamEventHandler
  13. from app.core.runner.utils import message_util as msg_util
  14. from app.core.runner.utils.tool_call_util import (
  15. tool_call_recognize,
  16. internal_tool_call_invoke,
  17. tool_call_request,
  18. tool_call_id,
  19. tool_call_output,
  20. )
  21. from app.core.tools import find_tools, BaseTool
  22. from app.libs.thread_executor import get_executor_for_config, run_with_executor
  23. from app.models.message import Message, MessageUpdate
  24. from app.models.run import Run
  25. from app.models.run_step import RunStep
  26. from app.models.token_relation import RelationType
  27. from app.services.assistant.assistant import AssistantService
  28. from app.services.file.file import FileService
  29. from app.services.message.message import MessageService
  30. from app.services.run.run import RunService
  31. from app.services.run.run_step import RunStepService
  32. from app.services.token.token import TokenService
  33. from app.services.token.token_relation import TokenRelationService
  34. class ThreadRunner:
  35. """
  36. ThreadRunner 封装 run 的执行逻辑
  37. """
  38. tool_executor: Executor = get_executor_for_config(
  39. tool_settings.TOOL_WORKER_NUM, "tool_worker_"
  40. )
  41. def __init__(
  42. self, run_id: str, token_id: str, session: Session, stream: bool = False
  43. ):
  44. self.run_id = run_id
  45. self.token_id = token_id
  46. self.session = session
  47. self.stream = stream
  48. self.max_step = llm_settings.LLM_MAX_STEP
  49. self.event_handler: StreamEventHandler = None
  50. def run(self):
  51. """
  52. 完成一次 run 的执行,基本步骤
  53. 1. 初始化,获取 run 以及相关 tools, 构造 system instructions;
  54. 2. 开始循环,查询已有 run step, 进行 chat message 生成;
  55. 3. 调用 llm 并解析返回结果;
  56. 4. 根据返回结果,生成新的 run step(tool calls 处理) 或者 message
  57. """
  58. # TODO: 重构,将 run 的状态变更逻辑放到 RunService 中
  59. run = RunService.get_run_sync(session=self.session, run_id=self.run_id)
  60. self.event_handler = StreamEventHandler(
  61. run_id=self.run_id, is_stream=self.stream
  62. )
  63. run = RunService.to_in_progress(session=self.session, run_id=self.run_id)
  64. self.event_handler.pub_run_in_progress(run)
  65. logging.info("processing ThreadRunner task, run_id: %s", self.run_id)
  66. # get memory from assistant metadata
  67. # format likes {"memory": {"type": "window", "window_size": 20, "max_token_size": 4000}}
  68. ast = AssistantService.get_assistant_sync(
  69. session=self.session, assistant_id=run.assistant_id
  70. )
  71. metadata = ast.metadata_ or {}
  72. memory = find_memory(metadata.get("memory", {}))
  73. instructions = (
  74. [run.instructions or ""] if run.instructions else [ast.instructions or ""]
  75. )
  76. asst_ids = []
  77. ids = []
  78. if ast.tool_resources and "file_search" in ast.tool_resources:
  79. ids = (
  80. ast.tool_resources.get("file_search")
  81. .get("vector_stores")[0]
  82. .get("folder_ids")
  83. )
  84. if ids:
  85. asst_ids += ids
  86. ids = (
  87. ast.tool_resources.get("file_search")
  88. .get("vector_stores")[0]
  89. .get("file_ids")
  90. )
  91. if ids:
  92. asst_ids += ids
  93. if len(asst_ids) > 0:
  94. if len(run.file_ids) > 0:
  95. run.tools.append({"type": "knowledge_search"})
  96. else:
  97. for tool in run.tools:
  98. if tool.get("type") == "file_search":
  99. tool["type"] = "knowledge_search"
  100. tools = find_tools(run, self.session)
  101. for tool in tools:
  102. tool.configure(session=self.session, run=run)
  103. instruction_supplement = tool.instruction_supplement()
  104. if instruction_supplement:
  105. instructions += [instruction_supplement or ""]
  106. instruction = "\n".join(instructions)
  107. llm = self.__init_llm_backend(run.assistant_id)
  108. loop = True
  109. while loop:
  110. print(
  111. "looplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooplooploop"
  112. )
  113. run_steps = RunStepService.get_run_step_list(
  114. session=self.session, run_id=self.run_id, thread_id=run.thread_id
  115. )
  116. loop = self.__run_step(llm, run, run_steps, instruction, tools, memory)
  117. # 任务结束
  118. self.event_handler.pub_run_completed(run)
  119. self.event_handler.pub_done()
  120. def __run_step(
  121. self,
  122. llm: LLMBackend,
  123. run: Run,
  124. run_steps: List[RunStep],
  125. instruction: str,
  126. tools: List[BaseTool],
  127. memory: Memory,
  128. ):
  129. """
  130. 执行 run step
  131. """
  132. logging.info("step %d is running", len(run_steps) + 1)
  133. if instruction == "":
  134. instruction = (
  135. "You are a multilingual AI assistant.\n"
  136. + "- Detect user language; reply in same language unless told otherwise.\n"
  137. + "- Default to English if detection is unclear.\n"
  138. + "- Give concise, accurate, and safe answers; admit when unsure.\n"
  139. + "- Keep tone and style consistent; adapt examples to user's context.\n"
  140. + "- For code, include explanations and comments in user's language.\n"
  141. + "- If a question is ambiguous, ask for clarification.\n"
  142. )
  143. assistant_system_message = [msg_util.system_message(instruction)]
  144. # 获取已有 message 上下文记录
  145. chat_messages = self.__generate_chat_messages(
  146. MessageService.get_message_list(
  147. session=self.session, thread_id=run.thread_id
  148. ),
  149. run,
  150. )
  151. tool_call_messages = []
  152. for step in run_steps:
  153. if step.type == "tool_calls" and step.status == "completed":
  154. tool_call_messages += (
  155. self.__convert_assistant_tool_calls_to_chat_messages(step)
  156. )
  157. # tool_call_messages = tool_call_messages
  158. # memory
  159. messages = (
  160. assistant_system_message
  161. + memory.integrate_context(chat_messages)
  162. + tool_call_messages
  163. )
  164. logging.info("messages: run %s", run)
  165. logging.info(messages)
  166. logging.info(tools)
  167. response_stream = llm.run(
  168. messages=messages,
  169. model=run.model,
  170. tools=[tool.openai_function for tool in tools],
  171. tool_choice="auto" if len(run_steps) < self.max_step else "none",
  172. stream=self.stream,
  173. stream_options=run.stream_options,
  174. extra_body=run.extra_body,
  175. temperature=run.temperature,
  176. top_p=run.top_p,
  177. response_format=run.response_format,
  178. parallel_tool_calls=run.parallel_tool_calls,
  179. audio=run.audio,
  180. modalities=run.modalities,
  181. )
  182. # create message callback
  183. create_message_callback = partial(
  184. MessageService.new_message,
  185. session=self.session,
  186. assistant_id=run.assistant_id,
  187. thread_id=run.thread_id,
  188. run_id=run.id,
  189. role="assistant",
  190. )
  191. # create 'message creation' run step callback
  192. def _create_message_creation_run_step(message_id):
  193. return RunStepService.new_run_step(
  194. session=self.session,
  195. type="message_creation",
  196. assistant_id=run.assistant_id,
  197. thread_id=run.thread_id,
  198. run_id=run.id,
  199. step_details={
  200. "type": "message_creation",
  201. "message_creation": {"message_id": message_id},
  202. },
  203. )
  204. llm_callback_handler = LLMCallbackHandler(
  205. run_id=run.id,
  206. on_step_create_func=_create_message_creation_run_step,
  207. on_message_create_func=create_message_callback,
  208. event_handler=self.event_handler,
  209. )
  210. if self.stream == False and hasattr(response_stream, "choices"):
  211. response_stream = [response_stream]
  212. response_msg = llm_callback_handler.handle_llm_response(response_stream)
  213. message_creation_run_step = llm_callback_handler.step
  214. print("444444444444444444444444455555555577777777777777777777777")
  215. logging.info("chat_response_message: %s", response_msg)
  216. if msg_util.is_tool_call(response_msg):
  217. # tool & tool_call definition dict
  218. tool_calls = [
  219. tool_call_recognize(tool_call, tools)
  220. for tool_call in response_msg.tool_calls
  221. ]
  222. # new run step for tool calls
  223. new_run_step = RunStepService.new_run_step(
  224. session=self.session,
  225. type="tool_calls",
  226. assistant_id=run.assistant_id,
  227. thread_id=run.thread_id,
  228. run_id=run.id,
  229. step_details={
  230. "type": "tool_calls",
  231. "tool_calls": [tool_call_dict for _, tool_call_dict in tool_calls],
  232. },
  233. )
  234. self.event_handler.pub_run_step_created(new_run_step)
  235. self.event_handler.pub_run_step_in_progress(new_run_step)
  236. internal_tool_calls = list(
  237. filter(lambda _tool_calls: _tool_calls[0] is not None, tool_calls)
  238. )
  239. external_tool_call_dict = [
  240. tool_call_dict for tool, tool_call_dict in tool_calls if tool is None
  241. ]
  242. # 为减少线程同步逻辑,依次处理内/外 tool_call 调用
  243. if internal_tool_calls:
  244. try:
  245. print(
  246. "==========================internal_tool_callsinternal_tool_callsinternal_tool_calls"
  247. )
  248. print(internal_tool_calls)
  249. ## 线程执行有问题 可以改成异步, 这里如果是filesearch要确定只执行一次
  250. tool_calls_with_outputs = run_with_executor(
  251. executor=ThreadRunner.tool_executor,
  252. func=internal_tool_call_invoke,
  253. tasks=internal_tool_calls,
  254. timeout=tool_settings.TOOL_WORKER_EXECUTION_TIMEOUT,
  255. )
  256. new_run_step = RunStepService.update_step_details(
  257. session=self.session,
  258. run_step_id=new_run_step.id,
  259. step_details={
  260. "type": "tool_calls",
  261. "tool_calls": tool_calls_with_outputs,
  262. },
  263. completed=not external_tool_call_dict,
  264. )
  265. except Exception as e:
  266. RunStepService.to_failed(
  267. session=self.session, run_step_id=new_run_step.id, last_error=e
  268. )
  269. raise e
  270. print(
  271. "aaaaaaaaaaaaaaa===============================================================8888888888888888888888888"
  272. )
  273. print(external_tool_call_dict)
  274. if external_tool_call_dict:
  275. # run 设置为 action required,等待业务完成更新并再次拉起
  276. run = RunService.to_requires_action(
  277. session=self.session,
  278. run_id=run.id,
  279. required_action={
  280. "type": "submit_tool_outputs",
  281. "submit_tool_outputs": {"tool_calls": external_tool_call_dict},
  282. },
  283. )
  284. self.event_handler.pub_run_step_delta(
  285. step_id=new_run_step.id,
  286. step_details={
  287. "type": "tool_calls",
  288. "tool_calls": external_tool_call_dict,
  289. },
  290. )
  291. print(run)
  292. self.event_handler.pub_run_requires_action(run)
  293. else:
  294. self.event_handler.pub_run_step_completed(new_run_step)
  295. return True
  296. else:
  297. if response_msg.content == "":
  298. response_msg.content = (
  299. '[{"text": {"value": "", "annotations": []}, "type": "text"}]'
  300. )
  301. # 无 tool call 信息,message 生成结束,更新状态
  302. new_message = MessageService.modify_message_sync(
  303. session=self.session,
  304. thread_id=run.thread_id,
  305. message_id=llm_callback_handler.message.id,
  306. body=MessageUpdate(content=response_msg.content),
  307. )
  308. self.event_handler.pub_message_completed(new_message)
  309. new_step = RunStepService.update_step_details(
  310. session=self.session,
  311. run_step_id=message_creation_run_step.id,
  312. step_details={
  313. "type": "message_creation",
  314. "message_creation": {"message_id": new_message.id},
  315. },
  316. completed=True,
  317. )
  318. RunService.to_completed(session=self.session, run_id=run.id)
  319. self.event_handler.pub_run_step_completed(new_step)
  320. return False
  321. def __init_llm_backend(self, assistant_id):
  322. if settings.AUTH_ENABLE:
  323. # init llm backend with token id
  324. if self.token_id:
  325. token_id = self.token_id
  326. else:
  327. token_id = TokenRelationService.get_token_id_by_relation(
  328. session=self.session,
  329. relation_type=RelationType.Assistant,
  330. relation_id=assistant_id,
  331. )
  332. print(
  333. "token_idtoken_idtoken_idtoken_idtoken_idtoken_idtoken_idtoken_idtoken_idtoken_idtoken_idtoken_id"
  334. )
  335. print(self.token_id)
  336. print(token_id)
  337. try:
  338. if token_id is not None and len(token_id) > 0:
  339. token = TokenService.get_token_by_id(self.session, token_id)
  340. print(token)
  341. return LLMBackend(
  342. base_url=token.llm_base_url, api_key=token.llm_api_key
  343. )
  344. except Exception as e:
  345. print(e)
  346. token = {
  347. "llm_base_url": "http://172.16.12.13:3000/v1",
  348. "llm_api_key": "sk-vTqeBKDC2j6osbGt89A2202dAd1c4fE8B1D294388b569e54",
  349. }
  350. return LLMBackend(
  351. base_url=token.get("llm_base_url"), api_key=token.get("llm_api_key")
  352. )
  353. else:
  354. # init llm backend with llm settings
  355. return LLMBackend(
  356. base_url=llm_settings.OPENAI_API_BASE,
  357. api_key=llm_settings.OPENAI_API_KEY,
  358. )
  359. def __generate_chat_messages(self, messages: List[Message], run: Run):
  360. """
  361. 根据历史信息生成 chat message
  362. """
  363. chat_messages = []
  364. is_audio_num = 0
  365. for message in messages:
  366. role = message.role
  367. if role == "user":
  368. message_content = []
  369. """
  370. if message.file_ids:
  371. files = FileService.get_file_list_by_ids(
  372. session=self.session, file_ids=message.file_ids
  373. )
  374. for file in files:
  375. chat_messages.append(
  376. msg_util.new_message(
  377. role,
  378. f'The file "{file.filename}" can be used as a reference',
  379. )
  380. )
  381. else:
  382. """
  383. for content in message.content:
  384. if content["type"] == "text":
  385. message_content.append(
  386. {"type": "text", "text": content["text"]["value"]}
  387. )
  388. elif content["type"] == "image_url" and run.audio is None:
  389. message_content.append(content)
  390. elif (
  391. content.get("type") == "input_audio"
  392. and run.audio is not None
  393. and is_audio_num < 2
  394. ):
  395. message_content.append(content)
  396. is_audio_num += 1
  397. chat_messages.append(msg_util.new_message(role, message_content))
  398. elif role == "assistant":
  399. message_content = ""
  400. for content in message.content:
  401. if content["type"] == "text":
  402. message_content += content["text"]["value"]
  403. if message_content == "":
  404. message_content = (
  405. "You are a multilingual AI assistant.\n"
  406. + "- Detect user language; reply in same language unless told otherwise.\n"
  407. + "- Default to English if detection is unclear.\n"
  408. + "- Give concise, accurate, and safe answers; admit when unsure.\n"
  409. + "- Keep tone and style consistent; adapt examples to user's context.\n"
  410. + "- For code, include explanations and comments in user's language.\n"
  411. + "- If a question is ambiguous, ask for clarification.\n"
  412. )
  413. chat_messages.append(msg_util.new_message(role, message_content))
  414. chat_messages.reverse() # 倒序排列,最新的消息在前面
  415. return chat_messages # 暂时只支持5条消息,后续正价token上限
  416. def __convert_assistant_tool_calls_to_chat_messages(self, run_step: RunStep):
  417. """
  418. 根据 run step 执行结果生成 message 信息
  419. 每个 tool call run step 包含两部分,调用与结果(结果可能为多个信息)
  420. """
  421. tool_calls = run_step.step_details["tool_calls"]
  422. tool_call_requests = [
  423. msg_util.tool_calls(
  424. [tool_call_request(tool_call) for tool_call in tool_calls]
  425. )
  426. ]
  427. tool_call_outputs = [
  428. msg_util.tool_call_result(
  429. tool_call_id(tool_call), tool_call_output(tool_call)
  430. )
  431. for tool_call in tool_calls
  432. ]
  433. return tool_call_requests + tool_call_outputs