123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- import asyncio
- import json
- import logging
- from abc import ABC, abstractmethod
- from typing import Any, AsyncGenerator, Optional, Type
- from pydantic import BaseModel
- from core.base.abstractions import (
- GenerationConfig,
- LLMChatCompletion,
- Message,
- MessageType,
- )
- from core.base.providers import CompletionProvider, DatabaseProvider
- from .base import Tool, ToolResult
- logger = logging.getLogger()
- class Conversation:
- def __init__(self):
- self.messages: list[Message] = []
- self._lock = asyncio.Lock()
- def create_and_add_message(
- self,
- role: MessageType | str,
- content: Optional[str] = None,
- name: Optional[str] = None,
- function_call: Optional[dict[str, Any]] = None,
- tool_calls: Optional[list[dict[str, Any]]] = None,
- ):
- message = Message(
- role=role,
- content=content,
- name=name,
- function_call=function_call,
- tool_calls=tool_calls,
- )
- self.add_message(message)
- async def add_message(self, message):
- async with self._lock:
- self.messages.append(message)
- async def get_messages(self) -> list[dict[str, Any]]:
- async with self._lock:
- return [
- {**msg.model_dump(exclude_none=True), "role": str(msg.role)}
- for msg in self.messages
- ]
- # TODO - Move agents to provider pattern
- class AgentConfig(BaseModel):
- system_instruction_name: str = "rag_agent"
- tool_names: list[str] = ["search"]
- generation_config: GenerationConfig = GenerationConfig()
- stream: bool = False
- @classmethod
- def create(cls: Type["AgentConfig"], **kwargs: Any) -> "AgentConfig":
- base_args = cls.model_fields.keys()
- filtered_kwargs = {
- k: v if v != "None" else None
- for k, v in kwargs.items()
- if k in base_args
- }
- return cls(**filtered_kwargs) # type: ignore
- class Agent(ABC):
- def __init__(
- self,
- llm_provider: CompletionProvider,
- database_provider: DatabaseProvider,
- config: AgentConfig,
- ):
- self.llm_provider = llm_provider
- self.database_provider: DatabaseProvider = database_provider
- self.config = config
- self.conversation = Conversation()
- self._completed = False
- self._tools: list[Tool] = []
- self._register_tools()
- @abstractmethod
- def _register_tools(self):
- pass
- async def _setup(self, system_instruction: Optional[str] = None):
- content = system_instruction or (
- await self.database_provider.prompts_handler.get_cached_prompt(
- self.config.system_instruction_name
- )
- )
- await self.conversation.add_message(
- Message(
- role="system",
- content=system_instruction
- or (
- await self.database_provider.prompts_handler.get_cached_prompt(
- self.config.system_instruction_name
- )
- ),
- )
- )
- @property
- def tools(self) -> list[Tool]:
- return self._tools
- @tools.setter
- def tools(self, tools: list[Tool]):
- self._tools = tools
- @abstractmethod
- async def arun(
- self,
- system_instruction: Optional[str] = None,
- messages: Optional[list[Message]] = None,
- *args,
- **kwargs,
- ) -> list[LLMChatCompletion] | AsyncGenerator[LLMChatCompletion, None]:
- pass
- @abstractmethod
- async def process_llm_response(
- self,
- response: Any,
- *args,
- **kwargs,
- ) -> None | AsyncGenerator[str, None]:
- pass
- async def execute_tool(self, tool_name: str, *args, **kwargs) -> str:
- if tool := next((t for t in self.tools if t.name == tool_name), None):
- return await tool.results_function(*args, **kwargs)
- else:
- return f"Error: Tool {tool_name} not found."
- def get_generation_config(
- self, last_message: dict, stream: bool = False
- ) -> GenerationConfig:
- if (
- last_message["role"] in ["tool", "function"]
- and last_message["content"] != ""
- ):
- return GenerationConfig(
- **self.config.generation_config.model_dump(
- exclude={"functions", "tools", "stream"}
- ),
- stream=stream,
- )
- return GenerationConfig(
- **self.config.generation_config.model_dump(
- exclude={"functions", "tools", "stream"}
- ),
- # FIXME: Use tools instead of functions
- # TODO - Investigate why `tools` fails with OpenAI+LiteLLM
- # tools=[
- # {
- # "function":{
- # "name": tool.name,
- # "description": tool.description,
- # "parameters": tool.parameters,
- # },
- # "type": "function"
- # }
- # for tool in self.tools
- # ],
- functions=[
- {
- "name": tool.name,
- "description": tool.description,
- "parameters": tool.parameters,
- }
- for tool in self.tools
- ],
- stream=stream,
- )
- async def handle_function_or_tool_call(
- self,
- function_name: str,
- function_arguments: str,
- tool_id: Optional[str] = None,
- *args,
- **kwargs,
- ) -> ToolResult:
- await self.conversation.add_message(
- Message(
- role="assistant",
- tool_calls=(
- [
- {
- "id": tool_id,
- "function": {
- "name": function_name,
- "arguments": function_arguments,
- },
- }
- ]
- if tool_id
- else None
- ),
- function_call=(
- {
- "name": function_name,
- "arguments": function_arguments,
- }
- if not tool_id
- else None
- ),
- )
- )
- if tool := next(
- (t for t in self.tools if t.name == function_name), None
- ):
- merged_kwargs = {**kwargs, **json.loads(function_arguments)}
- raw_result = await tool.results_function(*args, **merged_kwargs)
- llm_formatted_result = tool.llm_format_function(raw_result)
- tool_result = ToolResult(
- raw_result=raw_result,
- llm_formatted_result=llm_formatted_result,
- )
- if tool.stream_function:
- tool_result.stream_result = tool.stream_function(raw_result)
- else:
- error_message = f"The requested tool '{function_name}' is not available. Available tools: {', '.join(t.name for t in self.tools)}"
- tool_result = ToolResult(
- raw_result=error_message,
- llm_formatted_result=error_message,
- )
- await self.conversation.add_message(
- Message(
- role="tool" if tool_id else "function",
- content=str(tool_result.llm_formatted_result),
- name=function_name,
- )
- )
- return tool_result
|