123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322 |
- # type: ignore
- import asyncio
- import base64
- import logging
- import os
- import string
- import tempfile
- import unicodedata
- import uuid
- from io import BytesIO
- from typing import AsyncGenerator
- import aiofiles
- from pdf2image import convert_from_path
- from pdf2image.exceptions import PDFInfoNotInstalledError
- from core.base.abstractions import GenerationConfig
- from core.base.parsers.base_parser import AsyncParser
- from core.base.providers import (
- CompletionProvider,
- DatabaseProvider,
- IngestionConfig,
- )
- from shared.abstractions import PDFParsingError, PopperNotFoundError
- logger = logging.getLogger()
- class VLMPDFParser(AsyncParser[str | bytes]):
- """A parser for PDF documents using vision models for page processing."""
- def __init__(
- self,
- config: IngestionConfig,
- database_provider: DatabaseProvider,
- llm_provider: CompletionProvider,
- ):
- self.database_provider = database_provider
- self.llm_provider = llm_provider
- self.config = config
- self.vision_prompt_text = None
- try:
- from litellm import supports_vision
- self.supports_vision = supports_vision
- except ImportError:
- logger.error("Failed to import LiteLLM vision support")
- raise ImportError(
- "Please install the `litellm` package to use the VLMPDFParser."
- )
- def _create_temp_dir(self) -> str:
- """Create a unique temporary directory for PDF processing."""
- # Create a unique directory name using UUID
- unique_id = str(uuid.uuid4())
- temp_base = tempfile.gettempdir()
- temp_dir = os.path.join(temp_base, f"pdf_images_{unique_id}")
- os.makedirs(temp_dir, exist_ok=True)
- return temp_dir
- async def convert_pdf_to_images(
- self, pdf_path: str, temp_dir: str
- ) -> list[str]:
- """Convert PDF pages to images asynchronously."""
- options = {
- "pdf_path": pdf_path,
- "output_folder": temp_dir,
- "dpi": 300, # Configurable via config if needed
- "fmt": "jpeg",
- "thread_count": 4,
- "paths_only": True,
- }
- try:
- return await asyncio.to_thread(convert_from_path, **options)
- except PDFInfoNotInstalledError:
- raise PopperNotFoundError()
- except Exception as err:
- logger.error(
- f"Error converting PDF to images: {err} type: {type(err)}"
- )
- raise PDFParsingError(f"Failed to process PDF: {str(err)}", err)
- async def process_page(
- self, image_path: str, page_num: int
- ) -> dict[str, str]:
- """Process a single PDF page using the vision model."""
- try:
- # Read and encode image
- async with aiofiles.open(image_path, "rb") as image_file:
- image_data = await image_file.read()
- image_base64 = base64.b64encode(image_data).decode("utf-8")
- # Verify model supports vision
- if not self.supports_vision(model=self.config.vision_pdf_model):
- raise ValueError(
- f"Model {self.config.vision_pdf_model} does not support vision"
- )
- # Configure generation parameters
- generation_config = GenerationConfig(
- model=self.config.vision_pdf_model,
- stream=False,
- )
- # Prepare message with image
- messages = [
- {
- "role": "user",
- "content": [
- {"type": "text", "text": self.vision_prompt_text},
- {
- "type": "image_url",
- "image_url": {
- "url": f"data:image/jpeg;base64,{image_base64}"
- },
- },
- ],
- }
- ]
- # Get completion from LiteLLM provider
- response = await self.llm_provider.aget_completion(
- messages=messages, generation_config=generation_config
- )
- if response.choices and response.choices[0].message:
- content = response.choices[0].message.content
- if not content:
- raise ValueError("No content in response")
- return {"page": str(page_num), "content": content}
- else:
- raise ValueError("No response content")
- except Exception as e:
- logger.error(
- f"Error processing page {page_num} with vision model: {str(e)}"
- )
- raise
- async def ingest(
- self, data: str | bytes, maintain_order: bool = False, **kwargs
- ) -> AsyncGenerator[dict[str, str], None]:
- """
- Ingest PDF data and yield descriptions for each page using vision model.
- Args:
- data: PDF file path or bytes
- maintain_order: If True, yields results in page order. If False, yields as completed.
- **kwargs: Additional arguments passed to the completion call
- Yields:
- Dict containing page number and content for each processed page
- """
- if not self.vision_prompt_text:
- self.vision_prompt_text = await self.database_provider.prompts_handler.get_cached_prompt( # type: ignore
- prompt_name=self.config.vision_pdf_prompt_name
- )
- temp_dir = None
- try:
- # Create temporary directory for image processing
- # temp_dir = os.path.join(os.getcwd(), "temp_pdf_images")
- # os.makedirs(temp_dir, exist_ok=True)
- temp_dir = self._create_temp_dir()
- # Handle both file path and bytes input
- if isinstance(data, bytes):
- pdf_path = os.path.join(temp_dir, "temp.pdf")
- async with aiofiles.open(pdf_path, "wb") as f:
- await f.write(data)
- else:
- pdf_path = data
- # Convert PDF to images
- image_paths = await self.convert_pdf_to_images(pdf_path, temp_dir)
- # Create tasks for all pages
- tasks = {
- asyncio.create_task(
- self.process_page(image_path, page_num)
- ): page_num
- for page_num, image_path in enumerate(image_paths, 1)
- }
- if maintain_order:
- # Store results in order
- pending = set(tasks.keys())
- results = {}
- next_page = 1
- while pending:
- # Get next completed task
- done, pending = await asyncio.wait(
- pending, return_when=asyncio.FIRST_COMPLETED
- )
- # Process completed tasks
- for task in done:
- result = await task
- page_num = int(result["page"])
- results[page_num] = result
- # Yield results in order
- while next_page in results:
- yield results.pop(next_page)["content"]
- next_page += 1
- else:
- # Yield results as they complete
- for coro in asyncio.as_completed(tasks.keys()):
- result = await coro
- yield result["content"]
- except Exception as e:
- logger.error(f"Error processing PDF: {str(e)}")
- raise
- finally:
- # Cleanup temporary files
- if temp_dir and os.path.exists(temp_dir):
- for file in os.listdir(temp_dir):
- os.remove(os.path.join(temp_dir, file))
- os.rmdir(temp_dir)
- class BasicPDFParser(AsyncParser[str | bytes]):
- """A parser for PDF data."""
- def __init__(
- self,
- config: IngestionConfig,
- database_provider: DatabaseProvider,
- llm_provider: CompletionProvider,
- ):
- self.database_provider = database_provider
- self.llm_provider = llm_provider
- self.config = config
- try:
- from pypdf import PdfReader
- self.PdfReader = PdfReader
- except ImportError:
- raise ValueError(
- "Error, `pypdf` is required to run `PyPDFParser`. Please install it using `pip install pypdf`."
- )
- async def ingest(
- self, data: str | bytes, **kwargs
- ) -> AsyncGenerator[str, None]:
- """Ingest PDF data and yield text from each page."""
- if isinstance(data, str):
- raise ValueError("PDF data must be in bytes format.")
- pdf = self.PdfReader(BytesIO(data))
- for page in pdf.pages:
- page_text = page.extract_text()
- if page_text is not None:
- page_text = "".join(
- filter(
- lambda x: (
- unicodedata.category(x)
- in [
- "Ll",
- "Lu",
- "Lt",
- "Lm",
- "Lo",
- "Nl",
- "No",
- ] # Keep letters and numbers
- or "\u4E00" <= x <= "\u9FFF" # Chinese characters
- or "\u0600" <= x <= "\u06FF" # Arabic characters
- or "\u0400" <= x <= "\u04FF" # Cyrillic letters
- or "\u0370" <= x <= "\u03FF" # Greek letters
- or "\u0E00" <= x <= "\u0E7F" # Thai
- or "\u3040" <= x <= "\u309F" # Japanese Hiragana
- or "\u30A0" <= x <= "\u30FF" # Katakana
- or x in string.printable
- ),
- page_text,
- )
- ) # Keep characters in common languages ; # Filter out non-printable characters
- yield page_text
- class PDFParserUnstructured(AsyncParser[str | bytes]):
- def __init__(
- self,
- config: IngestionConfig,
- database_provider: DatabaseProvider,
- llm_provider: CompletionProvider,
- ):
- self.database_provider = database_provider
- self.llm_provider = llm_provider
- self.config = config
- try:
- from unstructured.partition.pdf import partition_pdf
- self.partition_pdf = partition_pdf
- except ImportError as e:
- logger.error("PDFParserUnstructured ImportError : ", e)
- logger.error(
- """Please install missing modules using :
- pip install unstructured unstructured_pytesseract unstructured_inference
- pip install pdfplumber matplotlib pillow_heif toml
- """
- )
- async def ingest(
- self,
- data: str | bytes,
- partition_strategy: str = "hi_res",
- chunking_strategy="by_title",
- ) -> AsyncGenerator[str, None]:
- # partition the pdf
- elements = self.partition_pdf(
- file=BytesIO(data),
- partition_strategy=partition_strategy,
- chunking_strategy=chunking_strategy,
- )
- for element in elements:
- yield element.text
|