embedding.py 1.0 KB

12345678910111213141516171819202122232425262728293031
  1. from enum import Enum, auto
  2. class EmbeddingPurpose(str, Enum):
  3. INDEX = auto()
  4. QUERY = auto()
  5. DOCUMENT = auto()
  6. default_embedding_prefixes = {
  7. "nomic-embed-text-v1.5": {
  8. EmbeddingPurpose.INDEX: "",
  9. EmbeddingPurpose.QUERY: "search_query: ",
  10. EmbeddingPurpose.DOCUMENT: "search_document: ",
  11. },
  12. "nomic-embed-text": {
  13. EmbeddingPurpose.INDEX: "",
  14. EmbeddingPurpose.QUERY: "search_query: ",
  15. EmbeddingPurpose.DOCUMENT: "search_document: ",
  16. },
  17. "mixedbread-ai/mxbai-embed-large-v1": {
  18. EmbeddingPurpose.INDEX: "",
  19. EmbeddingPurpose.QUERY: "Represent this sentence for searching relevant passages: ",
  20. EmbeddingPurpose.DOCUMENT: "Represent this sentence for searching relevant passages: ",
  21. },
  22. "mixedbread-ai/mxbai-embed-large": {
  23. EmbeddingPurpose.INDEX: "",
  24. EmbeddingPurpose.QUERY: "Represent this sentence for searching relevant passages: ",
  25. EmbeddingPurpose.DOCUMENT: "Represent this sentence for searching relevant passages: ",
  26. },
  27. }