[app] # LLM used for internal operations, like deriving conversation names fast_llm = "lm_studio/llama-3.2-3b-instruct" # LLM used for user-facing output, like RAG replies quality_llm = "lm_studio/llama-3.2-3b-instruct" # LLM used for ingesting visual inputs vlm = "lm_studio/llama3.2-vision" # TODO - Replace with viable candidate # LLM used for transcription audio_lm = "lm_studio/llama-3.2-3b-instruct" # TODO - Replace with viable candidate [embedding] provider = "litellm" base_model = "lm_studio/text-embedding-nomic-embed-text-v1.5" base_dimension = nan batch_size = 128 concurrent_request_limit = 2 [completion_embedding] # Generally this should be the same as the embedding config, but advanced users may want to run with a different provider to reduce latency provider = "litellm" base_model = "lm_studio/text-embedding-nomic-embed-text-v1.5" base_dimension = nan batch_size = 128 concurrent_request_limit = 2 [agent] tools = ["search_file_knowledge"] [completion] provider = "litellm" concurrent_request_limit = 1 [completion.generation_config] temperature = 0.1 top_p = 1 max_tokens_to_sample = 1_024 stream = false [ingestion] provider = "unstructured_local" strategy = "auto" chunking_strategy = "by_title" new_after_n_chars = 512 max_characters = 1_024 combine_under_n_chars = 128 overlap = 20 chunks_for_document_summary = 16 document_summary_model = "lm_studio/llama-3.2-3b-instruct" automatic_extraction = false [orchestration] provider = "hatchet"