[app] # LLM used for internal operations, like deriving conversation names fast_llm = "ollama/llama3.1" # LLM used for user-facing output, like RAG replies quality_llm = "ollama/llama3.1" # LLM used for ingesting visual inputs vlm = "ollama/llama3.1" # TODO - Replace with viable candidate # LLM used for transcription audio_lm = "ollama/llama3.1" # TODO - Replace with viable candidate # Reasoning model, used for `research` agent reasoning_llm = "ollama/llama3.1" # Planning model, used for `research` agent planning_llm = "ollama/llama3.1" [embedding] provider = "ollama" base_model = "mxbai-embed-large" base_dimension = 1_024 batch_size = 128 concurrent_request_limit = 2 [completion_embedding] provider = "ollama" base_model = "mxbai-embed-large" base_dimension = 1_024 batch_size = 128 concurrent_request_limit = 2 [agent] tools = ["search_file_knowledge"] [completion] provider = "litellm" concurrent_request_limit = 1 [completion.generation_config] temperature = 0.1 top_p = 1 max_tokens_to_sample = 1_024 stream = false api_base = "http://host.docker.internal:11434" [ingestion] provider = "unstructured_local" strategy = "auto" chunking_strategy = "by_title" new_after_n_chars = 512 max_characters = 1_024 combine_under_n_chars = 128 overlap = 20 chunks_for_document_summary = 16 document_summary_model = "ollama/llama3.1" automatic_extraction = false [orchestration] provider = "hatchet"