[app] # LLM used for internal operations, like deriving conversation names fast_llm = "lm_studio/llama-3.2-3b-instruct" # LLM used for user-facing output, like RAG replies quality_llm = "lm_studio/llama-3.2-3b-instruct" # LLM used for ingesting visual inputs vlm = "lm_studio/llama3.2-vision" # TODO - Replace with viable candidate # LLM used for transcription audio_lm = "lm_studio/llama-3.2-3b-instruct" # TODO - Replace with viable candidate [embedding] provider = "litellm" base_model = "lm_studio/text-embedding-nomic-embed-text-v1.5" base_dimension = nan batch_size = 128 concurrent_request_limit = 2 [completion_embedding] # Generally this should be the same as the embedding config, but advanced users may want to run with a different provider to reduce latency provider = "litellm" base_model = "lm_studio/text-embedding-nomic-embed-text-v1.5" base_dimension = nan batch_size = 128 concurrent_request_limit = 2 [agent] tools = ["search_file_knowledge"] [completion] provider = "litellm" concurrent_request_limit = 1 [completion.generation_config] temperature = 0.1 top_p = 1 max_tokens_to_sample = 1_024 stream = false