12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361 |
- import asyncio
- import logging
- import math
- import random
- import re
- import time
- import uuid
- import xml.etree.ElementTree as ET
- from typing import Any, AsyncGenerator, Coroutine, Optional
- from uuid import UUID
- from xml.etree.ElementTree import Element
- from core.base import (
- DocumentChunk,
- GraphExtraction,
- GraphExtractionStatus,
- R2RDocumentProcessingError,
- )
- from core.base.abstractions import (
- Community,
- Entity,
- GenerationConfig,
- GraphConstructionStatus,
- R2RException,
- Relationship,
- StoreType,
- )
- from core.base.api.models import GraphResponse
- from ..abstractions import R2RProviders
- from ..config import R2RConfig
- from .base import Service
- logger = logging.getLogger()
- MIN_VALID_GRAPH_EXTRACTION_RESPONSE_LENGTH = 128
- async def _collect_async_results(result_gen: AsyncGenerator) -> list[Any]:
- """Collects all results from an async generator into a list."""
- results = []
- async for res in result_gen:
- results.append(res)
- return results
- class GraphService(Service):
- def __init__(
- self,
- config: R2RConfig,
- providers: R2RProviders,
- ):
- super().__init__(
- config,
- providers,
- )
- async def create_entity(
- self,
- name: str,
- description: str,
- parent_id: UUID,
- category: Optional[str] = None,
- metadata: Optional[dict] = None,
- ) -> Entity:
- description_embedding = str(
- await self.providers.embedding.async_get_embedding(description)
- )
- return await self.providers.database.graphs_handler.entities.create(
- name=name,
- parent_id=parent_id,
- store_type=StoreType.GRAPHS,
- category=category,
- description=description,
- description_embedding=description_embedding,
- metadata=metadata,
- )
- async def update_entity(
- self,
- entity_id: UUID,
- name: Optional[str] = None,
- description: Optional[str] = None,
- category: Optional[str] = None,
- metadata: Optional[dict] = None,
- ) -> Entity:
- description_embedding = None
- if description is not None:
- description_embedding = str(
- await self.providers.embedding.async_get_embedding(description)
- )
- return await self.providers.database.graphs_handler.entities.update(
- entity_id=entity_id,
- store_type=StoreType.GRAPHS,
- name=name,
- description=description,
- description_embedding=description_embedding,
- category=category,
- metadata=metadata,
- )
- async def delete_entity(
- self,
- parent_id: UUID,
- entity_id: UUID,
- ):
- return await self.providers.database.graphs_handler.entities.delete(
- parent_id=parent_id,
- entity_ids=[entity_id],
- store_type=StoreType.GRAPHS,
- )
- async def get_entities(
- self,
- parent_id: UUID,
- offset: int,
- limit: int,
- entity_ids: Optional[list[UUID]] = None,
- entity_names: Optional[list[str]] = None,
- include_embeddings: bool = False,
- ):
- return await self.providers.database.graphs_handler.get_entities(
- parent_id=parent_id,
- offset=offset,
- limit=limit,
- entity_ids=entity_ids,
- entity_names=entity_names,
- include_embeddings=include_embeddings,
- )
- async def create_relationship(
- self,
- subject: str,
- subject_id: UUID,
- predicate: str,
- object: str,
- object_id: UUID,
- parent_id: UUID,
- description: str | None = None,
- weight: float | None = 1.0,
- metadata: Optional[dict[str, Any] | str] = None,
- ) -> Relationship:
- description_embedding = None
- if description:
- description_embedding = str(
- await self.providers.embedding.async_get_embedding(description)
- )
- return (
- await self.providers.database.graphs_handler.relationships.create(
- subject=subject,
- subject_id=subject_id,
- predicate=predicate,
- object=object,
- object_id=object_id,
- parent_id=parent_id,
- description=description,
- description_embedding=description_embedding,
- weight=weight,
- metadata=metadata,
- store_type=StoreType.GRAPHS,
- )
- )
- async def delete_relationship(
- self,
- parent_id: UUID,
- relationship_id: UUID,
- ):
- return (
- await self.providers.database.graphs_handler.relationships.delete(
- parent_id=parent_id,
- relationship_ids=[relationship_id],
- store_type=StoreType.GRAPHS,
- )
- )
- async def update_relationship(
- self,
- relationship_id: UUID,
- subject: Optional[str] = None,
- subject_id: Optional[UUID] = None,
- predicate: Optional[str] = None,
- object: Optional[str] = None,
- object_id: Optional[UUID] = None,
- description: Optional[str] = None,
- weight: Optional[float] = None,
- metadata: Optional[dict[str, Any] | str] = None,
- ) -> Relationship:
- description_embedding = None
- if description is not None:
- description_embedding = str(
- await self.providers.embedding.async_get_embedding(description)
- )
- return (
- await self.providers.database.graphs_handler.relationships.update(
- relationship_id=relationship_id,
- subject=subject,
- subject_id=subject_id,
- predicate=predicate,
- object=object,
- object_id=object_id,
- description=description,
- description_embedding=description_embedding,
- weight=weight,
- metadata=metadata,
- store_type=StoreType.GRAPHS,
- )
- )
- async def get_relationships(
- self,
- parent_id: UUID,
- offset: int,
- limit: int,
- relationship_ids: Optional[list[UUID]] = None,
- entity_names: Optional[list[str]] = None,
- ):
- return await self.providers.database.graphs_handler.relationships.get(
- parent_id=parent_id,
- store_type=StoreType.GRAPHS,
- offset=offset,
- limit=limit,
- relationship_ids=relationship_ids,
- entity_names=entity_names,
- )
- async def create_community(
- self,
- parent_id: UUID,
- name: str,
- summary: str,
- findings: Optional[list[str]],
- rating: Optional[float],
- rating_explanation: Optional[str],
- ) -> Community:
- description_embedding = str(
- await self.providers.embedding.async_get_embedding(summary)
- )
- return await self.providers.database.graphs_handler.communities.create(
- parent_id=parent_id,
- store_type=StoreType.GRAPHS,
- name=name,
- summary=summary,
- description_embedding=description_embedding,
- findings=findings,
- rating=rating,
- rating_explanation=rating_explanation,
- )
- async def update_community(
- self,
- community_id: UUID,
- name: Optional[str],
- summary: Optional[str],
- findings: Optional[list[str]],
- rating: Optional[float],
- rating_explanation: Optional[str],
- ) -> Community:
- summary_embedding = None
- if summary is not None:
- summary_embedding = str(
- await self.providers.embedding.async_get_embedding(summary)
- )
- return await self.providers.database.graphs_handler.communities.update(
- community_id=community_id,
- store_type=StoreType.GRAPHS,
- name=name,
- summary=summary,
- summary_embedding=summary_embedding,
- findings=findings,
- rating=rating,
- rating_explanation=rating_explanation,
- )
- async def delete_community(
- self,
- parent_id: UUID,
- community_id: UUID,
- ) -> None:
- await self.providers.database.graphs_handler.communities.delete(
- parent_id=parent_id,
- community_id=community_id,
- )
- async def get_communities(
- self,
- parent_id: UUID,
- offset: int,
- limit: int,
- community_ids: Optional[list[UUID]] = None,
- community_names: Optional[list[str]] = None,
- include_embeddings: bool = False,
- ):
- return await self.providers.database.graphs_handler.get_communities(
- parent_id=parent_id,
- offset=offset,
- limit=limit,
- community_ids=community_ids,
- include_embeddings=include_embeddings,
- )
- async def list_graphs(
- self,
- offset: int,
- limit: int,
- graph_ids: Optional[list[UUID]] = None,
- collection_id: Optional[UUID] = None,
- ) -> dict[str, list[GraphResponse] | int]:
- return await self.providers.database.graphs_handler.list_graphs(
- offset=offset,
- limit=limit,
- filter_graph_ids=graph_ids,
- filter_collection_id=collection_id,
- )
- async def update_graph(
- self,
- collection_id: UUID,
- name: Optional[str] = None,
- description: Optional[str] = None,
- ) -> GraphResponse:
- return await self.providers.database.graphs_handler.update(
- collection_id=collection_id,
- name=name,
- description=description,
- )
- async def reset_graph(self, id: UUID) -> bool:
- await self.providers.database.graphs_handler.reset(
- parent_id=id,
- )
- await self.providers.database.documents_handler.set_workflow_status(
- id=id,
- status_type="graph_cluster_status",
- status=GraphConstructionStatus.PENDING,
- )
- return True
- async def get_document_ids_for_create_graph(
- self,
- collection_id: UUID,
- **kwargs,
- ):
- document_status_filter = [
- GraphExtractionStatus.PENDING,
- GraphExtractionStatus.FAILED,
- ]
- return await self.providers.database.documents_handler.get_document_ids_by_status(
- status_type="extraction_status",
- status=[str(ele) for ele in document_status_filter],
- collection_id=collection_id,
- )
- async def graph_search_results_entity_description(
- self,
- document_id: UUID,
- max_description_input_length: int,
- batch_size: int = 256,
- **kwargs,
- ):
- """A new implementation of the old GraphDescriptionPipe logic inline.
- No references to pipe objects.
- We:
- 1) Count how many entities are in the document
- 2) Process them in batches of `batch_size`
- 3) For each batch, we retrieve the entity map and possibly call LLM for missing descriptions
- """
- start_time = time.time()
- logger.info(
- f"GraphService: Running graph_search_results_entity_description for doc={document_id}"
- )
- # Count how many doc-entities exist
- entity_count = (
- await self.providers.database.graphs_handler.get_entity_count(
- document_id=document_id,
- distinct=True,
- entity_table_name="documents_entities", # or whichever table
- )
- )
- logger.info(
- f"GraphService: Found {entity_count} doc-entities to describe."
- )
- all_results = []
- num_batches = math.ceil(entity_count / batch_size)
- for i in range(num_batches):
- offset = i * batch_size
- limit = batch_size
- logger.info(
- f"GraphService: describing batch {i + 1}/{num_batches}, offset={offset}, limit={limit}"
- )
- # Actually handle describing the entities in the batch
- # We'll collect them into a list via an async generator
- gen = self._describe_entities_in_document_batch(
- document_id=document_id,
- offset=offset,
- limit=limit,
- max_description_input_length=max_description_input_length,
- )
- batch_results = await _collect_async_results(gen)
- all_results.append(batch_results)
- # Mark the doc's extraction status as success
- await self.providers.database.documents_handler.set_workflow_status(
- id=document_id,
- status_type="extraction_status",
- status=GraphExtractionStatus.SUCCESS,
- )
- logger.info(
- f"GraphService: Completed graph_search_results_entity_description for doc {document_id} in {time.time() - start_time:.2f}s."
- )
- return all_results
- async def _describe_entities_in_document_batch(
- self,
- document_id: UUID,
- offset: int,
- limit: int,
- max_description_input_length: int,
- ) -> AsyncGenerator[str, None]:
- """Core logic that replaces GraphDescriptionPipe._run_logic for a
- particular document/batch.
- Yields entity-names or some textual result as each entity is updated.
- """
- start_time = time.time()
- logger.info(
- f"Started describing doc={document_id}, offset={offset}, limit={limit}"
- )
- # 1) Get the "entity map" from the DB
- entity_map = (
- await self.providers.database.graphs_handler.get_entity_map(
- offset=offset, limit=limit, document_id=document_id
- )
- )
- total_entities = len(entity_map)
- logger.info(
- f"_describe_entities_in_document_batch: got {total_entities} items in entity_map for doc={document_id}."
- )
- # 2) For each entity name in the map, we gather sub-entities and relationships
- tasks: list[Coroutine[Any, Any, str]] = []
- tasks.extend(
- self._process_entity_for_description(
- entities=[
- entity if isinstance(entity, Entity) else Entity(**entity)
- for entity in entity_info["entities"]
- ],
- relationships=[
- rel
- if isinstance(rel, Relationship)
- else Relationship(**rel)
- for rel in entity_info["relationships"]
- ],
- document_id=document_id,
- max_description_input_length=max_description_input_length,
- )
- for entity_name, entity_info in entity_map.items()
- )
- # 3) Wait for all tasks, yield as they complete
- idx = 0
- for coro in asyncio.as_completed(tasks):
- result = await coro
- idx += 1
- if idx % 100 == 0:
- logger.info(
- f"_describe_entities_in_document_batch: {idx}/{total_entities} described for doc={document_id}"
- )
- yield result
- logger.info(
- f"Finished describing doc={document_id} batch offset={offset} in {time.time() - start_time:.2f}s."
- )
- async def _process_entity_for_description(
- self,
- entities: list[Entity],
- relationships: list[Relationship],
- document_id: UUID,
- max_description_input_length: int,
- ) -> str:
- """Adapted from the old process_entity function in
- GraphDescriptionPipe.
- If entity has no description, call an LLM to create one, then store it.
- Returns the name of the top entity (or could store more details).
- """
- def truncate_info(info_list: list[str], max_length: int) -> str:
- """Shuffles lines of info to try to keep them distinct, then
- accumulates until hitting max_length."""
- random.shuffle(info_list)
- truncated_info = ""
- current_length = 0
- for info in info_list:
- if current_length + len(info) > max_length:
- break
- truncated_info += info + "\n"
- current_length += len(info)
- return truncated_info
- # Grab a doc-level summary (optional) to feed into the prompt
- response = await self.providers.database.documents_handler.get_documents_overview(
- offset=0,
- limit=1,
- filter_document_ids=[document_id],
- )
- document_summary = (
- response["results"][0].summary if response["results"] else None
- )
- # Synthesize a minimal “entity info” string + relationship summary
- entity_info = [
- f"{e.name}, {e.description or 'NONE'}" for e in entities
- ]
- relationships_txt = [
- f"{i + 1}: {r.subject}, {r.object}, {r.predicate} - Summary: {r.description or ''}"
- for i, r in enumerate(relationships)
- ]
- # We'll describe only the first entity for simplicity
- # or you could do them all if needed
- main_entity = entities[0]
- if not main_entity.description:
- # We only call LLM if the entity is missing a description
- messages = await self.providers.database.prompts_handler.get_message_payload(
- task_prompt_name=self.providers.database.config.graph_creation_settings.graph_entity_description_prompt,
- task_inputs={
- "document_summary": document_summary,
- "entity_info": truncate_info(
- entity_info, max_description_input_length
- ),
- "relationships_txt": truncate_info(
- relationships_txt, max_description_input_length
- ),
- },
- )
- # Call the LLM
- gen_config = (
- self.providers.database.config.graph_creation_settings.generation_config
- or GenerationConfig(model=self.config.app.fast_llm)
- )
- llm_resp = await self.providers.llm.aget_completion(
- messages=messages,
- generation_config=gen_config,
- )
- new_description = llm_resp.choices[0].message.content
- if not new_description:
- logger.error(
- f"No LLM description returned for entity={main_entity.name}"
- )
- return main_entity.name
- # create embedding
- embed = (
- await self.providers.embedding.async_get_embeddings(
- [new_description]
- )
- )[0]
- # update DB
- main_entity.description = new_description
- main_entity.description_embedding = embed
- # Use a method to upsert entity in `documents_entities` or your table
- await self.providers.database.graphs_handler.add_entities(
- [main_entity],
- table_name="documents_entities",
- )
- return main_entity.name
- async def graph_search_results_clustering(
- self,
- collection_id: UUID,
- generation_config: GenerationConfig,
- leiden_params: dict,
- **kwargs,
- ):
- """
- Replacement for the old GraphClusteringPipe logic:
- 1) call perform_graph_clustering on the DB
- 2) return the result
- """
- logger.info(
- f"Running inline clustering for collection={collection_id} with params={leiden_params}"
- )
- return await self._perform_graph_clustering(
- collection_id=collection_id,
- generation_config=generation_config,
- leiden_params=leiden_params,
- )
- async def _perform_graph_clustering(
- self,
- collection_id: UUID,
- generation_config: GenerationConfig,
- leiden_params: dict,
- ) -> dict:
- """The actual clustering logic (previously in
- GraphClusteringPipe.cluster_graph_search_results)."""
- num_communities = await self.providers.database.graphs_handler.perform_graph_clustering(
- collection_id=collection_id,
- leiden_params=leiden_params,
- )
- return {"num_communities": num_communities}
- async def graph_search_results_community_summary(
- self,
- offset: int,
- limit: int,
- max_summary_input_length: int,
- generation_config: GenerationConfig,
- collection_id: UUID,
- leiden_params: Optional[dict] = None,
- **kwargs,
- ):
- """Replacement for the old GraphCommunitySummaryPipe logic.
- Summarizes communities after clustering. Returns an async generator or
- you can collect into a list.
- """
- logger.info(
- f"Running inline community summaries for coll={collection_id}, offset={offset}, limit={limit}"
- )
- # We call an internal function that yields summaries
- gen = self._summarize_communities(
- offset=offset,
- limit=limit,
- max_summary_input_length=max_summary_input_length,
- generation_config=generation_config,
- collection_id=collection_id,
- leiden_params=leiden_params or {},
- )
- return await _collect_async_results(gen)
- async def _summarize_communities(
- self,
- offset: int,
- limit: int,
- max_summary_input_length: int,
- generation_config: GenerationConfig,
- collection_id: UUID,
- leiden_params: dict,
- ) -> AsyncGenerator[dict, None]:
- """Does the community summary logic from
- GraphCommunitySummaryPipe._run_logic.
- Yields each summary dictionary as it completes.
- """
- start_time = time.time()
- logger.info(
- f"Starting community summarization for collection={collection_id}"
- )
- # get all entities & relationships
- (
- all_entities,
- _,
- ) = await self.providers.database.graphs_handler.get_entities(
- parent_id=collection_id,
- offset=0,
- limit=-1,
- include_embeddings=False,
- )
- (
- all_relationships,
- _,
- ) = await self.providers.database.graphs_handler.get_relationships(
- parent_id=collection_id,
- offset=0,
- limit=-1,
- include_embeddings=False,
- )
- # We can optionally re-run the clustering to produce fresh community assignments
- (
- _,
- community_clusters,
- ) = await self.providers.database.graphs_handler._cluster_and_add_community_info(
- relationships=all_relationships,
- leiden_params=leiden_params,
- collection_id=collection_id,
- )
- # Group clusters
- clusters: dict[Any, list[str]] = {}
- for item in community_clusters:
- cluster_id = item["cluster"]
- node_name = item["node"]
- clusters.setdefault(cluster_id, []).append(node_name)
- # create an async job for each cluster
- tasks: list[Coroutine[Any, Any, dict]] = []
- tasks.extend(
- self._process_community_summary(
- community_id=uuid.uuid4(),
- nodes=nodes,
- all_entities=all_entities,
- all_relationships=all_relationships,
- max_summary_input_length=max_summary_input_length,
- generation_config=generation_config,
- collection_id=collection_id,
- )
- for nodes in clusters.values()
- )
- total_jobs = len(tasks)
- results_returned = 0
- total_errors = 0
- for coro in asyncio.as_completed(tasks):
- summary = await coro
- results_returned += 1
- if results_returned % 50 == 0:
- logger.info(
- f"Community summaries: {results_returned}/{total_jobs} done in {time.time() - start_time:.2f}s"
- )
- if "error" in summary:
- total_errors += 1
- yield summary
- if total_errors > 0:
- logger.warning(
- f"{total_errors} communities failed summarization out of {total_jobs}"
- )
- async def _process_community_summary(
- self,
- community_id: UUID,
- nodes: list[str],
- all_entities: list[Entity],
- all_relationships: list[Relationship],
- max_summary_input_length: int,
- generation_config: GenerationConfig,
- collection_id: UUID,
- ) -> dict:
- """
- Summarize a single community: gather all relevant entities/relationships, call LLM to generate an XML block,
- parse it, store the result as a community in DB.
- """
- # (Equivalent to process_community in old code)
- # fetch the collection description (optional)
- response = await self.providers.database.collections_handler.get_collections_overview(
- offset=0,
- limit=1,
- filter_collection_ids=[collection_id],
- )
- collection_description = (
- response["results"][0].description if response["results"] else None # type: ignore
- )
- # filter out relevant entities / relationships
- entities = [e for e in all_entities if e.name in nodes]
- relationships = [
- r
- for r in all_relationships
- if r.subject in nodes and r.object in nodes
- ]
- if not entities and not relationships:
- return {
- "community_id": community_id,
- "error": f"No data in this community (nodes={nodes})",
- }
- # Create the big input text for the LLM
- input_text = await self._community_summary_prompt(
- entities,
- relationships,
- max_summary_input_length,
- )
- # Attempt up to 3 times to parse
- for attempt in range(3):
- try:
- # Build the prompt
- messages = await self.providers.database.prompts_handler.get_message_payload(
- task_prompt_name=self.providers.database.config.graph_enrichment_settings.graph_communities_prompt,
- task_inputs={
- "collection_description": collection_description,
- "input_text": input_text,
- },
- )
- llm_resp = await self.providers.llm.aget_completion(
- messages=messages,
- generation_config=generation_config,
- )
- llm_text = llm_resp.choices[0].message.content or ""
- # find <community>...</community> XML
- match = re.search(
- r"<community>.*?</community>", llm_text, re.DOTALL
- )
- if not match:
- raise ValueError(
- "No <community> XML found in LLM response"
- )
- xml_content = re.sub(
- r"&(?!amp;|quot;|apos;|lt;|gt;)", "&", match.group(0)
- ).strip()
- root = ET.fromstring(xml_content)
- # extract fields
- name_elem = root.find("name")
- summary_elem = root.find("summary")
- rating_elem = root.find("rating")
- rating_expl_elem = root.find("rating_explanation")
- findings_elem = root.find("findings")
- name = name_elem.text if name_elem is not None else ""
- summary = summary_elem.text if summary_elem is not None else ""
- rating = (
- float(rating_elem.text)
- if isinstance(rating_elem, Element) and rating_elem.text
- else ""
- )
- rating_explanation = (
- rating_expl_elem.text
- if rating_expl_elem is not None
- else None
- )
- findings = (
- [f.text for f in findings_elem.findall("finding")]
- if findings_elem is not None
- else []
- )
- # build embedding
- embed_text = (
- "Summary:\n"
- + (summary or "")
- + "\n\nFindings:\n"
- + "\n".join(
- finding for finding in findings if finding is not None
- )
- )
- embedding = await self.providers.embedding.async_get_embedding(
- embed_text
- )
- # build Community object
- community = Community(
- community_id=community_id,
- collection_id=collection_id,
- name=name,
- summary=summary,
- rating=rating,
- rating_explanation=rating_explanation,
- findings=findings,
- description_embedding=embedding,
- )
- # store it
- await self.providers.database.graphs_handler.add_community(
- community
- )
- return {
- "community_id": community_id,
- "name": name,
- }
- except Exception as e:
- logger.error(
- f"Error summarizing community {community_id}: {e}"
- )
- if attempt == 2:
- return {"community_id": community_id, "error": str(e)}
- await asyncio.sleep(1)
- # fallback
- return {"community_id": community_id, "error": "Failed after retries"}
- async def _community_summary_prompt(
- self,
- entities: list[Entity],
- relationships: list[Relationship],
- max_summary_input_length: int,
- ) -> str:
- """Gathers the entity/relationship text, tries not to exceed
- `max_summary_input_length`."""
- # Group them by entity.name
- entity_map: dict[str, dict] = {}
- for e in entities:
- entity_map.setdefault(
- e.name, {"entities": [], "relationships": []}
- )
- entity_map[e.name]["entities"].append(e)
- for r in relationships:
- # subject
- entity_map.setdefault(
- r.subject, {"entities": [], "relationships": []}
- )
- entity_map[r.subject]["relationships"].append(r)
- # sort by # of relationships
- sorted_entries = sorted(
- entity_map.items(),
- key=lambda x: len(x[1]["relationships"]),
- reverse=True,
- )
- # build up the prompt text
- prompt_chunks = []
- cur_len = 0
- for entity_name, data in sorted_entries:
- block = f"\nEntity: {entity_name}\nDescriptions:\n"
- block += "\n".join(
- f"{e.id},{(e.description or '')}" for e in data["entities"]
- )
- block += "\nRelationships:\n"
- block += "\n".join(
- f"{r.id},{r.subject},{r.object},{r.predicate},{r.description or ''}"
- for r in data["relationships"]
- )
- # check length
- if cur_len + len(block) > max_summary_input_length:
- prompt_chunks.append(
- block[: max_summary_input_length - cur_len]
- )
- break
- else:
- prompt_chunks.append(block)
- cur_len += len(block)
- return "".join(prompt_chunks)
- async def delete(
- self,
- collection_id: UUID,
- **kwargs,
- ):
- return await self.providers.database.graphs_handler.delete(
- collection_id=collection_id,
- )
- async def graph_search_results_extraction(
- self,
- document_id: UUID,
- generation_config: GenerationConfig,
- entity_types: list[str],
- relation_types: list[str],
- chunk_merge_count: int,
- filter_out_existing_chunks: bool = True,
- total_tasks: Optional[int] = None,
- *args: Any,
- **kwargs: Any,
- ) -> AsyncGenerator[GraphExtraction | R2RDocumentProcessingError, None]:
- """The original “extract Graph from doc” logic, but inlined instead of
- referencing a pipe."""
- start_time = time.time()
- logger.info(
- f"Graph Extraction: Processing document {document_id} for graph extraction"
- )
- # Retrieve chunks from DB
- chunks = []
- limit = 100
- offset = 0
- while True:
- chunk_req = await self.providers.database.chunks_handler.list_document_chunks(
- document_id=document_id,
- offset=offset,
- limit=limit,
- )
- new_chunk_objs = [
- DocumentChunk(
- id=chunk["id"],
- document_id=chunk["document_id"],
- owner_id=chunk["owner_id"],
- collection_ids=chunk["collection_ids"],
- data=chunk["text"],
- metadata=chunk["metadata"],
- )
- for chunk in chunk_req["results"]
- ]
- chunks.extend(new_chunk_objs)
- if len(chunk_req["results"]) < limit:
- break
- offset += limit
- if not chunks:
- logger.info(f"No chunks found for document {document_id}")
- raise R2RException(
- message="No chunks found for document",
- status_code=404,
- )
- # Possibly filter out any chunks that have already been processed
- if filter_out_existing_chunks:
- existing_chunk_ids = await self.providers.database.graphs_handler.get_existing_document_entity_chunk_ids(
- document_id=document_id
- )
- before_count = len(chunks)
- chunks = [c for c in chunks if c.id not in existing_chunk_ids]
- logger.info(
- f"Filtered out {len(existing_chunk_ids)} existing chunk-IDs. {before_count}->{len(chunks)} remain."
- )
- if not chunks:
- return # nothing left to yield
- # sort by chunk_order if present
- chunks = sorted(
- chunks,
- key=lambda x: x.metadata.get("chunk_order", float("inf")),
- )
- # group them
- grouped_chunks = [
- chunks[i : i + chunk_merge_count]
- for i in range(0, len(chunks), chunk_merge_count)
- ]
- logger.info(
- f"Graph Extraction: Created {len(grouped_chunks)} tasks for doc={document_id}"
- )
- tasks = [
- asyncio.create_task(
- self._extract_graph_search_results_from_chunk_group(
- chunk_group,
- generation_config,
- entity_types,
- relation_types,
- )
- )
- for chunk_group in grouped_chunks
- ]
- completed_tasks = 0
- for t in asyncio.as_completed(tasks):
- try:
- yield await t
- completed_tasks += 1
- if completed_tasks % 100 == 0:
- logger.info(
- f"Graph Extraction: completed {completed_tasks}/{len(tasks)} tasks"
- )
- except Exception as e:
- logger.error(f"Error extracting from chunk group: {e}")
- yield R2RDocumentProcessingError(
- document_id=document_id,
- error_message=str(e),
- )
- logger.info(
- f"Graph Extraction: done with {document_id}, time={time.time() - start_time:.2f}s"
- )
- async def _extract_graph_search_results_from_chunk_group(
- self,
- chunks: list[DocumentChunk],
- generation_config: GenerationConfig,
- entity_types: list[str],
- relation_types: list[str],
- retries: int = 5,
- delay: int = 2,
- ) -> GraphExtraction:
- """(Equivalent to _extract_graph_search_results in old code.) Merges
- chunk data, calls LLM, parses XML, returns GraphExtraction object."""
- combined_extraction: str = " ".join(
- [
- c.data.decode("utf-8") if isinstance(c.data, bytes) else c.data
- for c in chunks
- if c.data
- ]
- )
- # Possibly get doc-level summary
- doc_id = chunks[0].document_id
- response = await self.providers.database.documents_handler.get_documents_overview(
- offset=0,
- limit=1,
- filter_document_ids=[doc_id],
- )
- document_summary = (
- response["results"][0].summary if response["results"] else None
- )
- # Build messages/prompt
- prompt_name = self.providers.database.config.graph_creation_settings.graph_extraction_prompt
- messages = (
- await self.providers.database.prompts_handler.get_message_payload(
- task_prompt_name=prompt_name,
- task_inputs={
- "document_summary": document_summary or "",
- "input": combined_extraction,
- "entity_types": "\n".join(entity_types),
- "relation_types": "\n".join(relation_types),
- },
- )
- )
- for attempt in range(retries):
- try:
- resp = await self.providers.llm.aget_completion(
- messages, generation_config=generation_config
- )
- graph_search_results_str = resp.choices[0].message.content
- if not graph_search_results_str:
- raise R2RException(
- "No extraction found in LLM response.",
- 400,
- )
- logger.info(generation_config)
- logger.info(graph_search_results_str)
- # parse the XML
- (
- entities,
- relationships,
- ) = await self._parse_graph_search_results_extraction_xml(
- graph_search_results_str, chunks
- )
- return GraphExtraction(
- entities=entities, relationships=relationships
- )
- except Exception as e:
- if attempt < retries - 1:
- await asyncio.sleep(delay)
- continue
- else:
- logger.error(
- f"All extraction attempts for doc={doc_id} and chunks{[chunk.id for chunk in chunks]} failed with error:\n{e}"
- )
- return GraphExtraction(entities=[], relationships=[])
- return GraphExtraction(entities=[], relationships=[])
- async def _parse_graph_search_results_extraction_xml(
- self, response_str: str, chunks: list[DocumentChunk]
- ) -> tuple[list[Entity], list[Relationship]]:
- """Helper to parse the LLM's XML format, handle edge cases/cleanup,
- produce Entities/Relationships."""
- def sanitize_xml(r: str) -> str:
- # Remove markdown fences
- r = re.sub(r"```xml|```", "", r)
- # Remove xml instructions or userStyle
- r = re.sub(r"<\?.*?\?>", "", r)
- r = re.sub(r"<userStyle>.*?</userStyle>", "", r)
- # Replace bare `&` with `&`
- r = re.sub(r"&(?!amp;|quot;|apos;|lt;|gt;)", "&", r)
- # Also remove <root> if it appears
- r = r.replace("<root>", "").replace("</root>", "")
- return r.strip()
- cleaned_xml = sanitize_xml(response_str)
- wrapped = f"<root>{cleaned_xml}</root>"
- try:
- root = ET.fromstring(wrapped, parser=ET.XMLParser(encoding="utf-8"))
- except ET.ParseError:
- raise R2RException(
- f"Failed to parse XML:\nData: {wrapped}", 400
- ) from None
- entities_elems = root.findall(".//entity")
- if (
- len(response_str) > MIN_VALID_GRAPH_EXTRACTION_RESPONSE_LENGTH
- and len(entities_elems) == 0
- ):
- raise R2RException(
- f"No <entity> found in LLM XML, possibly malformed. Response excerpt: {response_str[:300]}",
- 400,
- )
- # build entity objects
- doc_id = chunks[0].document_id
- chunk_ids = [c.id for c in chunks]
- entities_list: list[Entity] = []
- for element in entities_elems:
- name_attr = element.get("name")
- type_elem = element.find("type")
- desc_elem = element.find("description")
- category = type_elem.text if type_elem is not None else None
- desc = desc_elem.text if desc_elem is not None else None
- desc_embed = await self.providers.embedding.async_get_embedding(
- desc or ""
- )
- ent = Entity(
- category=category,
- description=desc,
- name=name_attr,
- parent_id=doc_id,
- chunk_ids=chunk_ids,
- description_embedding=desc_embed,
- attributes={},
- )
- entities_list.append(ent)
- # build relationship objects
- relationships_list: list[Relationship] = []
- rel_elems = root.findall(".//relationship")
- for r_elem in rel_elems:
- source_elem = r_elem.find("source")
- target_elem = r_elem.find("target")
- type_elem = r_elem.find("type")
- desc_elem = r_elem.find("description")
- weight_elem = r_elem.find("weight")
- try:
- subject = source_elem.text if source_elem is not None else ""
- object_ = target_elem.text if target_elem is not None else ""
- predicate = type_elem.text if type_elem is not None else ""
- desc = desc_elem.text if desc_elem is not None else ""
- weight = (
- float(weight_elem.text)
- if isinstance(weight_elem, Element) and weight_elem.text
- else ""
- )
- embed = await self.providers.embedding.async_get_embedding(
- desc or ""
- )
- rel = Relationship(
- subject=subject,
- predicate=predicate,
- object=object_,
- description=desc,
- weight=weight,
- parent_id=doc_id,
- chunk_ids=chunk_ids,
- attributes={},
- description_embedding=embed,
- )
- relationships_list.append(rel)
- except Exception:
- continue
- return entities_list, relationships_list
- async def store_graph_search_results_extractions(
- self,
- graph_search_results_extractions: list[GraphExtraction],
- ):
- """Stores a batch of knowledge graph extractions in the DB."""
- for extraction in graph_search_results_extractions:
- # Map name->id after creation
- entities_id_map = {}
- for e in extraction.entities:
- if e.parent_id is not None:
- result = await self.providers.database.graphs_handler.entities.create(
- name=e.name,
- parent_id=e.parent_id,
- store_type=StoreType.DOCUMENTS,
- category=e.category,
- description=e.description,
- description_embedding=e.description_embedding,
- chunk_ids=e.chunk_ids,
- metadata=e.metadata,
- )
- entities_id_map[e.name] = result.id
- else:
- logger.warning(f"Skipping entity with None parent_id: {e}")
- # Insert relationships
- for rel in extraction.relationships:
- subject_id = entities_id_map.get(rel.subject)
- object_id = entities_id_map.get(rel.object)
- parent_id = rel.parent_id
- if any(
- id is None for id in (subject_id, object_id, parent_id)
- ):
- logger.warning(f"Missing ID for relationship: {rel}")
- continue
- assert isinstance(subject_id, UUID)
- assert isinstance(object_id, UUID)
- assert isinstance(parent_id, UUID)
- await self.providers.database.graphs_handler.relationships.create(
- subject=rel.subject,
- subject_id=subject_id,
- predicate=rel.predicate,
- object=rel.object,
- object_id=object_id,
- parent_id=parent_id,
- description=rel.description,
- description_embedding=rel.description_embedding,
- weight=rel.weight,
- metadata=rel.metadata,
- store_type=StoreType.DOCUMENTS,
- )
- async def deduplicate_document_entities(
- self,
- document_id: UUID,
- ):
- """
- Inlined from old code: merges duplicates by name, calls LLM for a new consolidated description, updates the record.
- """
- merged_results = await self.providers.database.entities_handler.merge_duplicate_name_blocks(
- parent_id=document_id,
- store_type=StoreType.DOCUMENTS,
- )
- # Grab doc summary
- response = await self.providers.database.documents_handler.get_documents_overview(
- offset=0,
- limit=1,
- filter_document_ids=[document_id],
- )
- document_summary = (
- response["results"][0].summary if response["results"] else None
- )
- # For each merged entity
- for original_entities, merged_entity in merged_results:
- # Summarize them with LLM
- entity_info = "\n".join(
- e.description for e in original_entities if e.description
- )
- messages = await self.providers.database.prompts_handler.get_message_payload(
- task_prompt_name=self.providers.database.config.graph_creation_settings.graph_entity_description_prompt,
- task_inputs={
- "document_summary": document_summary,
- "entity_info": f"{merged_entity.name}\n{entity_info}",
- "relationships_txt": "",
- },
- )
- gen_config = (
- self.config.database.graph_creation_settings.generation_config
- or GenerationConfig(model=self.config.app.fast_llm)
- )
- resp = await self.providers.llm.aget_completion(
- messages, generation_config=gen_config
- )
- new_description = resp.choices[0].message.content
- new_embedding = await self.providers.embedding.async_get_embedding(
- new_description or ""
- )
- if merged_entity.id is not None:
- await self.providers.database.graphs_handler.entities.update(
- entity_id=merged_entity.id,
- store_type=StoreType.DOCUMENTS,
- description=new_description,
- description_embedding=str(new_embedding),
- )
- else:
- logger.warning("Skipping update for entity with None id")
|