12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187 |
- import asyncio
- import copy
- import csv
- import json
- import logging
- import math
- import tempfile
- from typing import IO, Any, Optional
- from uuid import UUID
- import asyncpg
- from fastapi import HTTPException
- from core.base import (
- DocumentResponse,
- DocumentType,
- GraphConstructionStatus,
- GraphExtractionStatus,
- Handler,
- IngestionStatus,
- R2RException,
- SearchSettings,
- )
- from .base import PostgresConnectionManager
- from .filters import apply_filters
- logger = logging.getLogger()
- def transform_filter_fields(filters: dict[str, Any]) -> dict[str, Any]:
- """Recursively transform filter field names by replacing 'document_id' with
- 'id'. Handles nested logical operators like $and, $or, etc.
- Args:
- filters (dict[str, Any]): The original filters dictionary
- Returns:
- dict[str, Any]: A new dictionary with transformed field names
- """
- if not filters:
- return {}
- transformed = {}
- for key, value in filters.items():
- # Handle logical operators recursively
- if key in ("$and", "$or", "$not"):
- if isinstance(value, list):
- transformed[key] = [
- transform_filter_fields(item) for item in value
- ]
- else:
- transformed[key] = transform_filter_fields(value) # type: ignore
- continue
- # Replace 'document_id' with 'id'
- new_key = "id" if key == "document_id" else key
- # Handle nested dictionary cases (e.g., for operators like $eq, $gt, etc.)
- if isinstance(value, dict):
- transformed[new_key] = transform_filter_fields(value) # type: ignore
- else:
- transformed[new_key] = value
- logger.debug(f"Transformed filters from {filters} to {transformed}")
- return transformed
- class PostgresDocumentsHandler(Handler):
- TABLE_NAME = "documents"
- def __init__(
- self,
- project_name: str,
- connection_manager: PostgresConnectionManager,
- dimension: int | float,
- ):
- self.dimension = dimension
- super().__init__(project_name, connection_manager)
- async def create_tables(self):
- logger.info(
- f"Creating table, if it does not exist: {self._get_table_name(PostgresDocumentsHandler.TABLE_NAME)}"
- )
- vector_dim = (
- "" if math.isnan(self.dimension) else f"({self.dimension})"
- )
- vector_type = f"vector{vector_dim}"
- try:
- query = f"""
- CREATE TABLE IF NOT EXISTS {self._get_table_name(PostgresDocumentsHandler.TABLE_NAME)} (
- id UUID PRIMARY KEY,
- collection_ids UUID[],
- owner_id UUID,
- type TEXT,
- metadata JSONB,
- title TEXT,
- summary TEXT NULL,
- summary_embedding {vector_type} NULL,
- version TEXT,
- size_in_bytes INT,
- ingestion_status TEXT DEFAULT 'pending',
- extraction_status TEXT DEFAULT 'pending',
- created_at TIMESTAMPTZ DEFAULT NOW(),
- updated_at TIMESTAMPTZ DEFAULT NOW(),
- ingestion_attempt_number INT DEFAULT 0,
- raw_tsvector tsvector GENERATED ALWAYS AS (
- setweight(to_tsvector('english', COALESCE(title, '')), 'A') ||
- setweight(to_tsvector('english', COALESCE(summary, '')), 'B') ||
- setweight(to_tsvector('english', COALESCE((metadata->>'description')::text, '')), 'C')
- ) STORED,
- total_tokens INT DEFAULT 0
- );
- CREATE INDEX IF NOT EXISTS idx_collection_ids_{self.project_name}
- ON {self._get_table_name(PostgresDocumentsHandler.TABLE_NAME)} USING GIN (collection_ids);
- -- Full text search index
- CREATE INDEX IF NOT EXISTS idx_doc_search_{self.project_name}
- ON {self._get_table_name(PostgresDocumentsHandler.TABLE_NAME)}
- USING GIN (raw_tsvector);
- """
- await self.connection_manager.execute_query(query)
- # ---------------------------------------------------------------
- # Now check if total_tokens column exists in the 'documents' table
- # ---------------------------------------------------------------
- # 1) See what columns exist
- # column_check_query = f"""
- # SELECT column_name
- # FROM information_schema.columns
- # WHERE table_name = '{self._get_table_name(PostgresDocumentsHandler.TABLE_NAME)}'
- # AND table_schema = CURRENT_SCHEMA()
- # """
- # existing_columns = await self.connection_manager.fetch_query(column_check_query)
- # 2) Parse the table name for schema checks
- table_full_name = self._get_table_name(
- PostgresDocumentsHandler.TABLE_NAME
- )
- parsed_schema = "public"
- parsed_table_name = table_full_name
- if "." in table_full_name:
- parts = table_full_name.split(".", maxsplit=1)
- parsed_schema = parts[0].replace('"', "").strip()
- parsed_table_name = parts[1].replace('"', "").strip()
- else:
- parsed_table_name = parsed_table_name.replace('"', "").strip()
- # 3) Check columns
- column_check_query = f"""
- SELECT column_name
- FROM information_schema.columns
- WHERE table_name = '{parsed_table_name}'
- AND table_schema = '{parsed_schema}'
- """
- existing_columns = await self.connection_manager.fetch_query(
- column_check_query
- )
- existing_column_names = {
- row["column_name"] for row in existing_columns
- }
- if "total_tokens" not in existing_column_names:
- # 2) If missing, see if the table already has data
- # doc_count_query = f"SELECT COUNT(*) FROM {self._get_table_name(PostgresDocumentsHandler.TABLE_NAME)}"
- # doc_count = await self.connection_manager.fetchval(doc_count_query)
- doc_count_query = f"SELECT COUNT(*) AS doc_count FROM {self._get_table_name(PostgresDocumentsHandler.TABLE_NAME)}"
- row = await self.connection_manager.fetchrow_query(
- doc_count_query
- )
- if row is None:
- doc_count = 0
- else:
- doc_count = row[
- "doc_count"
- ] # or row[0] if you prefer positional indexing
- if doc_count > 0:
- # We already have documents, but no total_tokens column
- # => ask user to run r2r db migrate
- logger.warning(
- "Adding the missing 'total_tokens' column to the 'documents' table, this will impact existing files."
- )
- create_tokens_col = f"""
- ALTER TABLE {table_full_name}
- ADD COLUMN total_tokens INT DEFAULT 0
- """
- await self.connection_manager.execute_query(create_tokens_col)
- except Exception as e:
- logger.warning(f"Error {e} when creating document table.")
- raise e
- async def upsert_documents_overview(
- self, documents_overview: DocumentResponse | list[DocumentResponse]
- ) -> None:
- if isinstance(documents_overview, DocumentResponse):
- documents_overview = [documents_overview]
- # TODO: make this an arg
- max_retries = 20
- for document in documents_overview:
- retries = 0
- while retries < max_retries:
- try:
- async with (
- self.connection_manager.pool.get_connection() as conn # type: ignore
- ):
- async with conn.transaction():
- # Lock the row for update
- check_query = f"""
- SELECT ingestion_attempt_number, ingestion_status FROM {self._get_table_name(PostgresDocumentsHandler.TABLE_NAME)}
- WHERE id = $1 FOR UPDATE
- """
- existing_doc = await conn.fetchrow(
- check_query, document.id
- )
- db_entry = document.convert_to_db_entry()
- if existing_doc:
- db_version = existing_doc[
- "ingestion_attempt_number"
- ]
- db_status = existing_doc["ingestion_status"]
- new_version = db_entry[
- "ingestion_attempt_number"
- ]
- # Only increment version if status is changing to 'success' or if it's a new version
- if (
- db_status != "success"
- and db_entry["ingestion_status"]
- == "success"
- ) or (new_version > db_version):
- new_attempt_number = db_version + 1
- else:
- new_attempt_number = db_version
- db_entry["ingestion_attempt_number"] = (
- new_attempt_number
- )
- update_query = f"""
- UPDATE {self._get_table_name(PostgresDocumentsHandler.TABLE_NAME)}
- SET collection_ids = $1,
- owner_id = $2,
- type = $3,
- metadata = $4,
- title = $5,
- version = $6,
- size_in_bytes = $7,
- ingestion_status = $8,
- extraction_status = $9,
- updated_at = $10,
- ingestion_attempt_number = $11,
- summary = $12,
- summary_embedding = $13,
- total_tokens = $14
- WHERE id = $15
- """
- await conn.execute(
- update_query,
- db_entry["collection_ids"],
- db_entry["owner_id"],
- db_entry["document_type"],
- db_entry["metadata"],
- db_entry["title"],
- db_entry["version"],
- db_entry["size_in_bytes"],
- db_entry["ingestion_status"],
- db_entry["extraction_status"],
- db_entry["updated_at"],
- db_entry["ingestion_attempt_number"],
- db_entry["summary"],
- db_entry["summary_embedding"],
- db_entry[
- "total_tokens"
- ], # pass the new field here
- document.id,
- )
- else:
- insert_query = f"""
- INSERT INTO {self._get_table_name(PostgresDocumentsHandler.TABLE_NAME)}
- (id, collection_ids, owner_id, type, metadata, title, version,
- size_in_bytes, ingestion_status, extraction_status, created_at,
- updated_at, ingestion_attempt_number, summary, summary_embedding, total_tokens)
- VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10, $11, $12, $13, $14, $15, $16)
- """
- await conn.execute(
- insert_query,
- db_entry["id"],
- db_entry["collection_ids"],
- db_entry["owner_id"],
- db_entry["document_type"],
- db_entry["metadata"],
- db_entry["title"],
- db_entry["version"],
- db_entry["size_in_bytes"],
- db_entry["ingestion_status"],
- db_entry["extraction_status"],
- db_entry["created_at"],
- db_entry["updated_at"],
- db_entry["ingestion_attempt_number"],
- db_entry["summary"],
- db_entry["summary_embedding"],
- db_entry["total_tokens"],
- )
- break # Success, exit the retry loop
- except (
- asyncpg.exceptions.UniqueViolationError,
- asyncpg.exceptions.DeadlockDetectedError,
- ) as e:
- retries += 1
- if retries == max_retries:
- logger.error(
- f"Failed to update document {document.id} after {max_retries} attempts. Error: {str(e)}"
- )
- raise
- else:
- wait_time = 0.1 * (2**retries) # Exponential backoff
- await asyncio.sleep(wait_time)
- async def delete(
- self, document_id: UUID, version: Optional[str] = None
- ) -> None:
- query = f"""
- DELETE FROM {self._get_table_name(PostgresDocumentsHandler.TABLE_NAME)}
- WHERE id = $1
- """
- params = [str(document_id)]
- if version:
- query += " AND version = $2"
- params.append(version)
- await self.connection_manager.execute_query(query=query, params=params)
- async def _get_status_from_table(
- self,
- ids: list[UUID],
- table_name: str,
- status_type: str,
- column_name: str,
- ):
- """Get the workflow status for a given document or list of documents.
- Args:
- ids (list[UUID]): The document IDs.
- table_name (str): The table name.
- status_type (str): The type of status to retrieve.
- Returns:
- The workflow status for the given document or list of documents.
- """
- query = f"""
- SELECT {status_type} FROM {self._get_table_name(table_name)}
- WHERE {column_name} = ANY($1)
- """
- return [
- row[status_type]
- for row in await self.connection_manager.fetch_query(query, [ids])
- ]
- async def _get_ids_from_table(
- self,
- status: list[str],
- table_name: str,
- status_type: str,
- collection_id: Optional[UUID] = None,
- ):
- """Get the IDs from a given table.
- Args:
- status (str | list[str]): The status or list of statuses to retrieve.
- table_name (str): The table name.
- status_type (str): The type of status to retrieve.
- """
- query = f"""
- SELECT id FROM {self._get_table_name(table_name)}
- WHERE {status_type} = ANY($1) and $2 = ANY(collection_ids)
- """
- records = await self.connection_manager.fetch_query(
- query, [status, collection_id]
- )
- return [record["id"] for record in records]
- async def _set_status_in_table(
- self,
- ids: list[UUID],
- status: str,
- table_name: str,
- status_type: str,
- column_name: str,
- ):
- """Set the workflow status for a given document or list of documents.
- Args:
- ids (list[UUID]): The document IDs.
- status (str): The status to set.
- table_name (str): The table name.
- status_type (str): The type of status to set.
- column_name (str): The column name in the table to update.
- """
- query = f"""
- UPDATE {self._get_table_name(table_name)}
- SET {status_type} = $1
- WHERE {column_name} = Any($2)
- """
- await self.connection_manager.execute_query(query, [status, ids])
- def _get_status_model(self, status_type: str):
- """Get the status model for a given status type.
- Args:
- status_type (str): The type of status to retrieve.
- Returns:
- The status model for the given status type.
- """
- if status_type == "ingestion":
- return IngestionStatus
- elif status_type == "extraction_status":
- return GraphExtractionStatus
- elif status_type in {"graph_cluster_status", "graph_sync_status"}:
- return GraphConstructionStatus
- else:
- raise R2RException(
- status_code=400, message=f"Invalid status type: {status_type}"
- )
- async def get_workflow_status(
- self, id: UUID | list[UUID], status_type: str
- ):
- """Get the workflow status for a given document or list of documents.
- Args:
- id (UUID | list[UUID]): The document ID or list of document IDs.
- status_type (str): The type of status to retrieve.
- Returns:
- The workflow status for the given document or list of documents.
- """
- ids = [id] if isinstance(id, UUID) else id
- out_model = self._get_status_model(status_type)
- result = await self._get_status_from_table(
- ids,
- out_model.table_name(),
- status_type,
- out_model.id_column(),
- )
- result = [out_model[status.upper()] for status in result]
- return result[0] if isinstance(id, UUID) else result
- async def set_workflow_status(
- self, id: UUID | list[UUID], status_type: str, status: str
- ):
- """Set the workflow status for a given document or list of documents.
- Args:
- id (UUID | list[UUID]): The document ID or list of document IDs.
- status_type (str): The type of status to set.
- status (str): The status to set.
- """
- ids = [id] if isinstance(id, UUID) else id
- out_model = self._get_status_model(status_type)
- return await self._set_status_in_table(
- ids,
- status,
- out_model.table_name(),
- status_type,
- out_model.id_column(),
- )
- async def get_document_ids_by_status(
- self,
- status_type: str,
- status: str | list[str],
- collection_id: Optional[UUID] = None,
- ):
- """Get the IDs for a given status.
- Args:
- ids_key (str): The key to retrieve the IDs.
- status_type (str): The type of status to retrieve.
- status (str | list[str]): The status or list of statuses to retrieve.
- """
- if isinstance(status, str):
- status = [status]
- out_model = self._get_status_model(status_type)
- return await self._get_ids_from_table(
- status, out_model.table_name(), status_type, collection_id
- )
- async def get_documents_overview(
- self,
- offset: int,
- limit: int,
- filter_user_ids: Optional[list[UUID]] = None,
- filter_document_ids: Optional[list[UUID]] = None,
- filter_collection_ids: Optional[list[UUID]] = None,
- include_summary_embedding: Optional[bool] = True,
- filters: Optional[dict[str, Any]] = None,
- sort_order: str = "DESC",
- owner_only: bool = False,
- ) -> dict[str, Any]:
- """Fetch overviews of documents with optional offset/limit pagination.
- You can use either:
- - Traditional filters: `filter_user_ids`, `filter_document_ids`, `filter_collection_ids`
- - A `filters` dict (e.g., like we do in semantic search), which will be passed to `apply_filters`.
- If both the `filters` dict and any of the traditional filter arguments are provided,
- this method will raise an error.
- """
- filters = copy.deepcopy(filters)
- filters = transform_filter_fields(filters) # type: ignore
- # Safety check: We do not allow mixing the old filter arguments with the new `filters` dict.
- # This keeps the query logic unambiguous.
- if filters and any(
- [
- filter_user_ids,
- filter_document_ids,
- filter_collection_ids,
- ]
- ):
- raise HTTPException(
- status_code=400,
- detail=(
- "Cannot use both the 'filters' dictionary "
- "and the 'filter_*_ids' parameters simultaneously."
- ),
- )
- conditions = []
- params: list[Any] = []
- param_index = 1
- # -------------------------------------------
- # 1) If using the new `filters` dict approach
- # -------------------------------------------
- if filters:
- # Apply the filters to generate a WHERE clause
- filter_condition, filter_params = apply_filters(
- filters, params, mode="condition_only"
- )
- if filter_condition:
- conditions.append(filter_condition)
- # Make sure we keep adding to the same params list
- params.extend(filter_params)
- param_index += len(filter_params)
- # -------------------------------------------
- # 2) If using the old filter_*_ids approach
- # -------------------------------------------
- else:
- # Handle document IDs with AND
- if filter_document_ids:
- conditions.append(f"id = ANY(${param_index})")
- params.append(filter_document_ids)
- param_index += 1
- # For owner/collection filters, we used OR logic previously
- # so we combine them into a single sub-condition in parentheses
- owner_conditions = []
- collection_conditions = []
- if filter_user_ids:
- owner_conditions.append(f"owner_id = ANY(${param_index})")
- params.append(filter_user_ids)
- param_index += 1
- if filter_collection_ids:
- collection_conditions.append(
- f"collection_ids && ${param_index}"
- )
- params.append(filter_collection_ids)
- param_index += 1
- if owner_only:
- if owner_conditions:
- conditions.append(f"({' OR '.join(owner_conditions)})")
- if collection_conditions:
- conditions.append(
- f"({' OR '.join(collection_conditions)})"
- )
- elif (
- combined_conditions := owner_conditions + collection_conditions
- ):
- conditions.append(f"({' OR '.join(combined_conditions)})")
- # -------------------------
- # Build the full query
- # -------------------------
- base_query = (
- f"FROM {self._get_table_name(PostgresDocumentsHandler.TABLE_NAME)}"
- )
- if conditions:
- # Combine everything with AND
- base_query += " WHERE " + " AND ".join(conditions)
- # Construct SELECT fields (including total_entries via window function)
- select_fields = """
- SELECT
- id,
- collection_ids,
- owner_id,
- type,
- metadata,
- title,
- version,
- size_in_bytes,
- ingestion_status,
- extraction_status,
- created_at,
- updated_at,
- summary,
- summary_embedding,
- total_tokens,
- COUNT(*) OVER() AS total_entries
- """
- query = f"""
- {select_fields}
- {base_query}
- ORDER BY created_at {sort_order}
- OFFSET ${param_index}
- """
- params.append(offset)
- param_index += 1
- if limit != -1:
- query += f" LIMIT ${param_index}"
- params.append(limit)
- param_index += 1
- try:
- results = await self.connection_manager.fetch_query(query, params)
- total_entries = results[0]["total_entries"] if results else 0
- documents = []
- for row in results:
- # Safely handle the embedding
- embedding = None
- if (
- "summary_embedding" in row
- and row["summary_embedding"] is not None
- ):
- try:
- # The embedding is stored as a string like "[0.1, 0.2, ...]"
- embedding_str = row["summary_embedding"]
- if embedding_str.startswith(
- "["
- ) and embedding_str.endswith("]"):
- embedding = [
- float(x)
- for x in embedding_str[1:-1].split(",")
- if x
- ]
- except Exception as e:
- logger.warning(
- f"Failed to parse embedding for document {row['id']}: {e}"
- )
- documents.append(
- DocumentResponse(
- id=row["id"],
- collection_ids=row["collection_ids"],
- owner_id=row["owner_id"],
- document_type=DocumentType(row["type"]),
- metadata=json.loads(row["metadata"]),
- title=row["title"],
- version=row["version"],
- size_in_bytes=row["size_in_bytes"],
- ingestion_status=IngestionStatus(
- row["ingestion_status"]
- ),
- extraction_status=GraphExtractionStatus(
- row["extraction_status"]
- ),
- created_at=row["created_at"],
- updated_at=row["updated_at"],
- summary=row["summary"] if "summary" in row else None,
- summary_embedding=(
- embedding if include_summary_embedding else None
- ),
- total_tokens=row["total_tokens"],
- )
- )
- return {"results": documents, "total_entries": total_entries}
- except Exception as e:
- logger.error(f"Error in get_documents_overview: {str(e)}")
- raise HTTPException(
- status_code=500,
- detail="Database query failed",
- ) from e
- async def update_document_metadata(
- self,
- document_id: UUID,
- metadata: list[dict],
- overwrite: bool = False,
- ) -> DocumentResponse:
- """
- Update the metadata of a document, either by appending to existing metadata or overwriting it.
- Accepts a list of metadata dictionaries.
- """
- doc_result = await self.get_documents_overview(
- offset=0,
- limit=1,
- filter_document_ids=[document_id],
- )
- if not doc_result["results"]:
- raise HTTPException(
- status_code=404,
- detail=f"Document with ID {document_id} not found",
- )
- existing_doc = doc_result["results"][0]
- if overwrite:
- combined_metadata: dict[str, Any] = {}
- for meta_item in metadata:
- combined_metadata |= meta_item
- existing_doc.metadata = combined_metadata
- else:
- for meta_item in metadata:
- existing_doc.metadata.update(meta_item)
- await self.upsert_documents_overview(existing_doc)
- return existing_doc
- async def semantic_document_search(
- self, query_embedding: list[float], search_settings: SearchSettings
- ) -> list[DocumentResponse]:
- """Search documents using semantic similarity with their summary
- embeddings."""
- where_clauses = ["summary_embedding IS NOT NULL"]
- params: list[str | int | bytes] = [str(query_embedding)]
- vector_dim = (
- "" if math.isnan(self.dimension) else f"({self.dimension})"
- )
- filters = copy.deepcopy(search_settings.filters)
- if filters:
- filter_condition, params = apply_filters(
- transform_filter_fields(filters), params, mode="condition_only"
- )
- if filter_condition:
- where_clauses.append(filter_condition)
- where_clause = " AND ".join(where_clauses)
- query = f"""
- WITH document_scores AS (
- SELECT
- id,
- collection_ids,
- owner_id,
- type,
- metadata,
- title,
- version,
- size_in_bytes,
- ingestion_status,
- extraction_status,
- created_at,
- updated_at,
- summary,
- summary_embedding,
- total_tokens,
- (summary_embedding <=> $1::vector({vector_dim})) as semantic_distance
- FROM {self._get_table_name(PostgresDocumentsHandler.TABLE_NAME)}
- WHERE {where_clause}
- ORDER BY semantic_distance ASC
- LIMIT ${len(params) + 1}
- OFFSET ${len(params) + 2}
- )
- SELECT *,
- 1.0 - semantic_distance as semantic_score
- FROM document_scores
- """
- params.extend([search_settings.limit, search_settings.offset])
- results = await self.connection_manager.fetch_query(query, params)
- return [
- DocumentResponse(
- id=row["id"],
- collection_ids=row["collection_ids"],
- owner_id=row["owner_id"],
- document_type=DocumentType(row["type"]),
- metadata={
- **(
- json.loads(row["metadata"])
- if search_settings.include_metadatas
- else {}
- ),
- "search_score": float(row["semantic_score"]),
- "search_type": "semantic",
- },
- title=row["title"],
- version=row["version"],
- size_in_bytes=row["size_in_bytes"],
- ingestion_status=IngestionStatus(row["ingestion_status"]),
- extraction_status=GraphExtractionStatus(
- row["extraction_status"]
- ),
- created_at=row["created_at"],
- updated_at=row["updated_at"],
- summary=row["summary"],
- summary_embedding=[
- float(x)
- for x in row["summary_embedding"][1:-1].split(",")
- if x
- ],
- total_tokens=row["total_tokens"],
- )
- for row in results
- ]
- async def full_text_document_search(
- self, query_text: str, search_settings: SearchSettings
- ) -> list[DocumentResponse]:
- """Enhanced full-text search using generated tsvector."""
- where_clauses = ["raw_tsvector @@ websearch_to_tsquery('english', $1)"]
- params: list[str | int | bytes] = [query_text]
- filters = copy.deepcopy(search_settings.filters)
- if filters:
- filter_condition, params = apply_filters(
- transform_filter_fields(filters), params, mode="condition_only"
- )
- if filter_condition:
- where_clauses.append(filter_condition)
- where_clause = " AND ".join(where_clauses)
- query = f"""
- WITH document_scores AS (
- SELECT
- id,
- collection_ids,
- owner_id,
- type,
- metadata,
- title,
- version,
- size_in_bytes,
- ingestion_status,
- extraction_status,
- created_at,
- updated_at,
- summary,
- summary_embedding,
- total_tokens,
- ts_rank_cd(raw_tsvector, websearch_to_tsquery('english', $1), 32) as text_score
- FROM {self._get_table_name(PostgresDocumentsHandler.TABLE_NAME)}
- WHERE {where_clause}
- ORDER BY text_score DESC
- LIMIT ${len(params) + 1}
- OFFSET ${len(params) + 2}
- )
- SELECT * FROM document_scores
- """
- params.extend([search_settings.limit, search_settings.offset])
- results = await self.connection_manager.fetch_query(query, params)
- return [
- DocumentResponse(
- id=row["id"],
- collection_ids=row["collection_ids"],
- owner_id=row["owner_id"],
- document_type=DocumentType(row["type"]),
- metadata={
- **(
- json.loads(row["metadata"])
- if search_settings.include_metadatas
- else {}
- ),
- "search_score": float(row["text_score"]),
- "search_type": "full_text",
- },
- title=row["title"],
- version=row["version"],
- size_in_bytes=row["size_in_bytes"],
- ingestion_status=IngestionStatus(row["ingestion_status"]),
- extraction_status=GraphExtractionStatus(
- row["extraction_status"]
- ),
- created_at=row["created_at"],
- updated_at=row["updated_at"],
- summary=row["summary"],
- summary_embedding=(
- [
- float(x)
- for x in row["summary_embedding"][1:-1].split(",")
- if x
- ]
- if row["summary_embedding"]
- else None
- ),
- total_tokens=row["total_tokens"],
- )
- for row in results
- ]
- async def hybrid_document_search(
- self,
- query_text: str,
- query_embedding: list[float],
- search_settings: SearchSettings,
- ) -> list[DocumentResponse]:
- """Search documents using both semantic and full-text search with RRF
- fusion."""
- # Get more results than needed for better fusion
- extended_settings = copy.deepcopy(search_settings)
- extended_settings.limit = search_settings.limit * 3
- # Get results from both search methods
- semantic_results = await self.semantic_document_search(
- query_embedding, extended_settings
- )
- full_text_results = await self.full_text_document_search(
- query_text, extended_settings
- )
- # Combine results using RRF
- doc_scores: dict[str, dict] = {}
- # Process semantic results
- for rank, result in enumerate(semantic_results, 1):
- doc_id = str(result.id)
- doc_scores[doc_id] = {
- "semantic_rank": rank,
- "full_text_rank": len(full_text_results)
- + 1, # Default rank if not found
- "data": result,
- }
- # Process full-text results
- for rank, result in enumerate(full_text_results, 1):
- doc_id = str(result.id)
- if doc_id in doc_scores:
- doc_scores[doc_id]["full_text_rank"] = rank
- else:
- doc_scores[doc_id] = {
- "semantic_rank": len(semantic_results)
- + 1, # Default rank if not found
- "full_text_rank": rank,
- "data": result,
- }
- # Calculate RRF scores using hybrid search settings
- rrf_k = search_settings.hybrid_settings.rrf_k
- semantic_weight = search_settings.hybrid_settings.semantic_weight
- full_text_weight = search_settings.hybrid_settings.full_text_weight
- for scores in doc_scores.values():
- semantic_score = 1 / (rrf_k + scores["semantic_rank"])
- full_text_score = 1 / (rrf_k + scores["full_text_rank"])
- # Weighted combination
- combined_score = (
- semantic_score * semantic_weight
- + full_text_score * full_text_weight
- ) / (semantic_weight + full_text_weight)
- scores["final_score"] = combined_score
- # Sort by final score and apply offset/limit
- sorted_results = sorted(
- doc_scores.values(), key=lambda x: x["final_score"], reverse=True
- )[
- search_settings.offset : search_settings.offset
- + search_settings.limit
- ]
- return [
- DocumentResponse(
- **{
- **result["data"].__dict__,
- "metadata": {
- **(
- result["data"].metadata
- if search_settings.include_metadatas
- else {}
- ),
- "search_score": result["final_score"],
- "semantic_rank": result["semantic_rank"],
- "full_text_rank": result["full_text_rank"],
- "search_type": "hybrid",
- },
- }
- )
- for result in sorted_results
- ]
- async def search_documents(
- self,
- query_text: str,
- query_embedding: Optional[list[float]] = None,
- settings: Optional[SearchSettings] = None,
- ) -> list[DocumentResponse]:
- """Main search method that delegates to the appropriate search method
- based on settings."""
- if settings is None:
- settings = SearchSettings()
- if (
- settings.use_semantic_search and settings.use_fulltext_search
- ) or settings.use_hybrid_search:
- if query_embedding is None:
- raise ValueError(
- "query_embedding is required for hybrid search"
- )
- return await self.hybrid_document_search(
- query_text, query_embedding, settings
- )
- elif settings.use_semantic_search:
- if query_embedding is None:
- raise ValueError(
- "query_embedding is required for vector search"
- )
- return await self.semantic_document_search(
- query_embedding, settings
- )
- else:
- return await self.full_text_document_search(query_text, settings)
- async def export_to_csv(
- self,
- columns: Optional[list[str]] = None,
- filters: Optional[dict] = None,
- include_header: bool = True,
- ) -> tuple[str, IO]:
- """Creates a CSV file from the PostgreSQL data and returns the path to
- the temp file."""
- valid_columns = {
- "id",
- "collection_ids",
- "owner_id",
- "type",
- "metadata",
- "title",
- "summary",
- "version",
- "size_in_bytes",
- "ingestion_status",
- "extraction_status",
- "created_at",
- "updated_at",
- "total_tokens",
- }
- filters = copy.deepcopy(filters)
- filters = transform_filter_fields(filters) # type: ignore
- if not columns:
- columns = list(valid_columns)
- elif invalid_cols := set(columns) - valid_columns:
- raise ValueError(f"Invalid columns: {invalid_cols}")
- select_stmt = f"""
- SELECT
- id::text,
- collection_ids::text,
- owner_id::text,
- type::text,
- metadata::text AS metadata,
- title,
- summary,
- version,
- size_in_bytes,
- ingestion_status,
- extraction_status,
- to_char(created_at, 'YYYY-MM-DD HH24:MI:SS') AS created_at,
- to_char(updated_at, 'YYYY-MM-DD HH24:MI:SS') AS updated_at,
- total_tokens
- FROM {self._get_table_name(self.TABLE_NAME)}
- """
- conditions = []
- params: list[Any] = []
- param_index = 1
- if filters:
- for field, value in filters.items():
- if field not in valid_columns:
- continue
- if isinstance(value, dict):
- for op, val in value.items():
- if op == "$eq":
- conditions.append(f"{field} = ${param_index}")
- params.append(val)
- param_index += 1
- elif op == "$gt":
- conditions.append(f"{field} > ${param_index}")
- params.append(val)
- param_index += 1
- elif op == "$lt":
- conditions.append(f"{field} < ${param_index}")
- params.append(val)
- param_index += 1
- else:
- # Direct equality
- conditions.append(f"{field} = ${param_index}")
- params.append(value)
- param_index += 1
- if conditions:
- select_stmt = f"{select_stmt} WHERE {' AND '.join(conditions)}"
- select_stmt = f"{select_stmt} ORDER BY created_at DESC"
- temp_file = None
- try:
- temp_file = tempfile.NamedTemporaryFile(
- mode="w", delete=True, suffix=".csv"
- )
- writer = csv.writer(temp_file, quoting=csv.QUOTE_ALL)
- async with self.connection_manager.pool.get_connection() as conn: # type: ignore
- async with conn.transaction():
- cursor = await conn.cursor(select_stmt, *params)
- if include_header:
- writer.writerow(columns)
- chunk_size = 1000
- while True:
- rows = await cursor.fetch(chunk_size)
- if not rows:
- break
- for row in rows:
- row_dict = {
- "id": row[0],
- "collection_ids": row[1],
- "owner_id": row[2],
- "type": row[3],
- "metadata": row[4],
- "title": row[5],
- "summary": row[6],
- "version": row[7],
- "size_in_bytes": row[8],
- "ingestion_status": row[9],
- "extraction_status": row[10],
- "created_at": row[11],
- "updated_at": row[12],
- "total_tokens": row[13],
- }
- writer.writerow([row_dict[col] for col in columns])
- temp_file.flush()
- return temp_file.name, temp_file
- except Exception as e:
- if temp_file:
- temp_file.close()
- raise HTTPException(
- status_code=500,
- detail=f"Failed to export data: {str(e)}",
- ) from e
|