jack b10d7ab143 update vor 23 Stunden
..
core b10d7ab143 update vor 23 Stunden
migrations 6db66cb907 update vor 2 Tagen
r2r 6db66cb907 update vor 2 Tagen
sdk 6db66cb907 update vor 2 Tagen
shared 6db66cb907 update vor 2 Tagen
tests 6db66cb907 update vor 2 Tagen
updatecode 6db66cb907 update vor 2 Tagen
.dockerignore 6db66cb907 update vor 2 Tagen
Dockerfile 6db66cb907 update vor 2 Tagen
README.md 6db66cb907 update vor 2 Tagen
all_possible_config.toml 6db66cb907 update vor 2 Tagen
all_possible_config.toml.bak 6db66cb907 update vor 2 Tagen
pyproject.toml 6db66cb907 update vor 2 Tagen
pyproject.toml.bak 6db66cb907 update vor 2 Tagen
uv.lock 6db66cb907 update vor 2 Tagen

README.md

The most advanced AI retrieval system. Agentic Retrieval-Augmented Generation (RAG) with a RESTful API.

About

R2R is an advanced AI retrieval system supporting Retrieval-Augmented Generation (RAG) with production-ready features. Built around a RESTful API, R2R offers multimodal content ingestion, hybrid search, knowledge graphs, and comprehensive document management.

R2R also includes a Deep Research API, a multi-step reasoning system that fetches relevant data from your knowledgebase and/or the internet to deliver richer, context-aware answers for complex queries.

Usage

# Basic search
results = client.retrieval.search(query="What is DeepSeek R1?")

# RAG with citations
response = client.retrieval.rag(query="What is DeepSeek R1?")

# Deep Research RAG Agent
response = client.retrieval.agent(
  message={"role":"user", "content": "What does deepseek r1 imply? Think about market, societal implications, and more."},
  rag_generation_config={
    "model": "anthropic/claude-3-7-sonnet-20250219",
    "extended_thinking": True,
    "thinking_budget": 4096,
    "temperature": 1,
    "top_p": None,
    "max_tokens_to_sample": 16000,
  },
)

Getting Started

# Quick install and run in light mode
pip install r2r
export OPENAI_API_KEY=sk-...
python -m r2r.serve

# Or run in full mode with Docker
# git clone git@github.com:SciPhi-AI/R2R.git && cd R2R
# export R2R_CONFIG_NAME=full OPENAI_API_KEY=sk-...
# docker compose -f compose.full.yaml --profile postgres up -d

For detailed self-hosting instructions, see the self-hosting docs.

Demo

https://github.com/user-attachments/assets/173f7a1f-7c0b-4055-b667-e2cdcf70128b

Using the API

1. Install SDK & Setup

# Install SDK
pip install r2r  # Python
# or
npm i r2r-js    # JavaScript

2. Client Initialization

from r2r import R2RClient
client = R2RClient(base_url="http://localhost:7272")
const { r2rClient } = require('r2r-js');
const client = new r2rClient("http://localhost:7272");

3. Document Operations

# Ingest sample or your own document
client.documents.create(file_path="/path/to/file")

# List documents
client.documents.list()

Key Features

  • 📁 Multimodal Ingestion: Parse .txt, .pdf, .json, .png, .mp3, and more
  • 🔍 Hybrid Search: Semantic + keyword search with reciprocal rank fusion
  • 🔗 Knowledge Graphs: Automatic entity & relationship extraction
  • 🤖 Agentic RAG: Reasoning agent integrated with retrieval
  • 🔐 User & Access Management: Complete authentication & collection system

Community & Contributing

Our Contributors