123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- from maix import nn, camera, image, display
- from maix.nn.app.face import FaceRecognize
- import time
- from evdev import InputDevice
- from select import select
- score_threshold = 70 #识别分数阈值
- input_size = (224, 224, 3) #输入图片尺寸
- input_size_fe = (128, 128, 3) #输入人脸数据
- feature_len = 256 #人脸数据宽度
- steps = [8, 16, 32] #
- channel_num = 0 #通道数量
- users = [] #初始化用户列表
- names = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"] #人脸标签定义
- model = {
- "param": "/home/model/face_recognize/model_int8.param",
- "bin": "/home/model/face_recognize/model_int8.bin"
- }
- model_fe = {
- "param": "/home/model/face_recognize/fe_res18_117.param",
- "bin": "/home/model/face_recognize/fe_res18_117.bin"
- }
- for i in range(len(steps)):
- channel_num += input_size[1] / steps[i] * (input_size[0] / steps[i]) * 2
- channel_num = int(channel_num) #统计通道数量
- options = { #准备人脸输出参数
- "model_type": "awnn",
- "inputs": {
- "input0": input_size
- },
- "outputs": {
- "output0": (1, 4, channel_num) ,
- "431": (1, 2, channel_num) ,
- "output2": (1, 10, channel_num)
- },
- "mean": [127.5, 127.5, 127.5],
- "norm": [0.0078125, 0.0078125, 0.0078125],
- }
- options_fe = { #准备特征提取参数
- "model_type": "awnn",
- "inputs": {
- "inputs_blob": input_size_fe
- },
- "outputs": {
- "FC_blob": (1, 1, feature_len)
- },
- "mean": [127.5, 127.5, 127.5],
- "norm": [0.0078125, 0.0078125, 0.0078125],
- }
- keys = InputDevice('/dev/input/event0')
- threshold = 0.5 #人脸阈值
- nms = 0.3
- max_face_num = 1 #输出的画面中的人脸的最大个数
- print("-- load model:", model)
- m = nn.load(model, opt=options)
- print("-- load ok")
- print("-- load model:", model_fe)
- m_fe = nn.load(model_fe, opt=options_fe)
- print("-- load ok")
- face_recognizer = FaceRecognize(m, m_fe, feature_len, input_size, threshold, nms, max_face_num)
- def get_key(): #按键检测函数
- r,w,x = select([keys], [], [],0)
- if r:
- for event in keys.read():
- if event.value == 1 and event.code == 0x02: # 右键
- return 1
- elif event.value == 1 and event.code == 0x03: # 左键
- return 2
- elif event.value == 2 and event.code == 0x03: # 左键连按
- return 3
- return 0
- def map_face(box,points): #将224*224空间的位置转换到240*240或320*240空间内
- # print(box,points)
- if display.width() == display.height():
- def tran(x):
- return int(x/224*display.width())
- box = list(map(tran, box))
- def tran_p(p):
- return list(map(tran, p))
- points = list(map(tran_p, points))
- else:
- # 168x224(320x240) > 224x224(240x240) > 320x240
- s = (224*display.height()/display.width()) # 168x224
- w, h, c = display.width()/224, display.height()/224, 224/s
- t, d = c*h, (224 - s) // 2 # d = 224 - s // 2 == 28
- box[0], box[1], box[2], box[3] = int(box[0]*w), int((box[1]-28)*t), int(box[2]*w), int((box[3])*t)
- def tran_p(p):
- return [int(p[0]*w), int((p[1]-d)*t)] # 224 - 168 / 2 = 28 so 168 / (old_h - 28) = 240 / new_h
- points = list(map(tran_p, points))
- # print(box,points)
- return box,points
- def darw_info(draw, box, points, disp_str, bg_color=(255, 0, 0), font_color=(255, 255, 255)): #画框函数
- box,points = map_face(box,points)
- font_wh = image.get_string_size(disp_str)
- for p in points:
- draw.draw_rectangle(p[0] - 1, p[1] -1, p[0] + 1, p[1] + 1, color=bg_color)
- draw.draw_rectangle(box[0], box[1], box[0] + box[2], box[1] + box[3], color=bg_color, thickness=2)
- draw.draw_rectangle(box[0], box[1] - font_wh[1], box[0] + font_wh[0], box[1], color=bg_color, thickness = -1)
- draw.draw_string(box[0], box[1] - font_wh[1], disp_str, color=font_color)
- def recognize(feature): #进行人脸匹配
- def _compare(user): #定义映射函数
- return face_recognizer.compare(user, feature) #推测匹配分数 score相关分数
- face_score_l = list(map(_compare,users)) #映射特征数据在记录中的比对分数
- return max(enumerate(face_score_l), key=lambda x: x[-1]) #提取出人脸分数最大值和最大值所在的位置
- def run():
- img = camera.capture() #获取224*224*3的图像数据
- AI_img = img.copy().resize(224, 224)
- if not img:
- time.sleep(0.02)
- return
- faces = face_recognizer.get_faces(AI_img.tobytes(),False) #提取人脸特征信息
- if faces:
- for prob, box, landmarks, feature in faces:
- key_val = get_key()
- if key_val == 1: # 右键添加人脸记录
- if len(users) < len(names):
- print("add user:", len(users))
- users.append(feature)
- else:
- print("user full")
- elif key_val == 2: # 左键删除人脸记录
- if len(users) > 0:
- print("remove user:", names[len(users) - 1])
- users.pop()
- else:
- print("user empty")
- if len(users): #判断是否记录人脸
- maxIndex = recognize(feature)
- if maxIndex[1] > score_threshold: #判断人脸识别阈值,当分数大于阈值时认为是同一张脸,当分数小于阈值时认为是相似脸
- darw_info(img, box, landmarks, "{}:{:.2f}".format(names[maxIndex[0]], maxIndex[1]), font_color=(0, 0, 255, 255), bg_color=(0, 255, 0, 255))
- print("user: {}, score: {:.2f}".format(names[maxIndex[0]], maxIndex[1]))
- else:
- darw_info(img, box, landmarks, "{}:{:.2f}".format(names[maxIndex[0]], maxIndex[1]), font_color=(255, 255, 255, 255), bg_color=(255, 0, 0, 255))
- print("maybe user: {}, score: {:.2f}".format(names[maxIndex[0]], maxIndex[1]))
- else: #没有记录脸
- darw_info(img, box, landmarks, "error face", font_color=(255, 255, 255, 255), bg_color=(255, 0, 0, 255))
- display.show(img)
- if __name__ == "__main__":
- import signal
- def handle_signal_z(signum,frame):
- print("APP OVER")
- exit(0)
- signal.signal(signal.SIGINT,handle_signal_z)
- while True:
- run()
|