RMaixtr vor 1 Jahr
Ursprung
Commit
32cd45f16e
74 geänderte Dateien mit 273 neuen und 141 gelöschten Zeilen
  1. BIN
      backup/preset/audio/jump1.wav
  2. BIN
      backup/preset/fonts/HarmonyOS_Sans_Black.ttf
  3. BIN
      backup/preset/fonts/HarmonyOS_Sans_Black_Italic.ttf
  4. BIN
      backup/preset/fonts/HarmonyOS_Sans_Bold.ttf
  5. BIN
      backup/preset/fonts/HarmonyOS_Sans_Bold_Italic.ttf
  6. BIN
      backup/preset/fonts/HarmonyOS_Sans_Condensed_Black.ttf
  7. BIN
      backup/preset/fonts/HarmonyOS_Sans_Condensed_Black_Italic.ttf
  8. BIN
      backup/preset/fonts/HarmonyOS_Sans_Condensed_Bold.ttf
  9. BIN
      backup/preset/fonts/HarmonyOS_Sans_Condensed_Bold_Italic.ttf
  10. BIN
      backup/preset/fonts/HarmonyOS_Sans_Condensed_Light.ttf
  11. BIN
      backup/preset/fonts/HarmonyOS_Sans_Condensed_Light_Italic.ttf
  12. BIN
      backup/preset/fonts/HarmonyOS_Sans_Condensed_Medium.ttf
  13. BIN
      backup/preset/fonts/HarmonyOS_Sans_Condensed_Medium_Italic.ttf
  14. BIN
      backup/preset/fonts/HarmonyOS_Sans_Condensed_Regular.ttf
  15. BIN
      backup/preset/fonts/HarmonyOS_Sans_Condensed_Regular_Italic.ttf
  16. BIN
      backup/preset/fonts/HarmonyOS_Sans_Condensed_Thin.ttf
  17. BIN
      backup/preset/fonts/HarmonyOS_Sans_Condensed_Thin_Italic.ttf
  18. BIN
      backup/preset/fonts/HarmonyOS_Sans_Light.ttf
  19. BIN
      backup/preset/fonts/HarmonyOS_Sans_Light_Italic.ttf
  20. BIN
      backup/preset/fonts/HarmonyOS_Sans_Medium.ttf
  21. BIN
      backup/preset/fonts/HarmonyOS_Sans_Medium_Italic.ttf
  22. BIN
      backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_Black.ttf
  23. BIN
      backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_Bold.ttf
  24. BIN
      backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_Light.ttf
  25. BIN
      backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_Medium.ttf
  26. BIN
      backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_Regular.ttf
  27. BIN
      backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_Thin.ttf
  28. BIN
      backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_UI_Black.ttf
  29. BIN
      backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_UI_Bold.ttf
  30. BIN
      backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_UI_Light.ttf
  31. BIN
      backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_UI_Medium.ttf
  32. BIN
      backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_UI_Regular.ttf
  33. BIN
      backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_UI_Thin.ttf
  34. BIN
      backup/preset/fonts/HarmonyOS_Sans_Regular.ttf
  35. BIN
      backup/preset/fonts/HarmonyOS_Sans_Regular_Italic.ttf
  36. BIN
      backup/preset/fonts/HarmonyOS_Sans_TC_Black.ttf
  37. BIN
      backup/preset/fonts/HarmonyOS_Sans_TC_Bold.ttf
  38. BIN
      backup/preset/fonts/HarmonyOS_Sans_TC_Light.ttf
  39. BIN
      backup/preset/fonts/HarmonyOS_Sans_TC_Medium.ttf
  40. BIN
      backup/preset/fonts/HarmonyOS_Sans_TC_Regular.ttf
  41. BIN
      backup/preset/fonts/HarmonyOS_Sans_TC_Thin.ttf
  42. BIN
      backup/preset/fonts/HarmonyOS_Sans_Thin.ttf
  43. BIN
      backup/preset/fonts/HarmonyOS_Sans_Thin_Italic.ttf
  44. BIN
      backup/preset/fonts/ScreenMatrix.ttf
  45. BIN
      backup/preset/fonts/SourceHanSansCN-Bold.otf
  46. BIN
      backup/preset/fonts/SourceHanSansCN-ExtraLight.otf
  47. BIN
      backup/preset/fonts/SourceHanSansCN-Heavy.otf
  48. BIN
      backup/preset/fonts/SourceHanSansCN-Light.otf
  49. BIN
      backup/preset/fonts/SourceHanSansCN-Medium.otf
  50. BIN
      backup/preset/fonts/SourceHanSansCN-Normal.otf
  51. BIN
      backup/preset/fonts/SourceHanSansCN-Regular.otf
  52. BIN
      backup/preset/fonts/botPixel.ttf
  53. BIN
      backup/preset/fonts/framdit.ttf
  54. BIN
      backup/preset/fonts/阿里巴巴普惠体H.ttf
  55. BIN
      backup/preset/fonts/阿里汉仪智能黑体.ttf
  56. BIN
      backup/preset/img/jumpbot/oneHeadThreeLeg_128_128.png
  57. BIN
      backup/preset/img/jumpbot/oneHeadThreeLeg_left_jump.png
  58. BIN
      backup/preset/img/jumpbot/oneHeadThreeLeg_left_nojump.png
  59. BIN
      backup/preset/img/jumpbot/oneHeadThreeLeg_middle_jump.png
  60. BIN
      backup/preset/img/jumpbot/oneHeadThreeLeg_middle_nojump.png
  61. BIN
      backup/preset/img/jumpbot/oneHeadThreeLeg_right_jump.png
  62. BIN
      backup/preset/img/jumpbot/oneHeadThreeLeg_right_nojump.png
  63. 0 26
      backup/preset/server/ccrb.crt
  64. 0 27
      backup/preset/server/ccrb.key
  65. 0 88
      backup/preset/server/wirelessServer.py
  66. 175 0
      backup/preset/training/res/README.md
  67. 25 0
      backup/preset/training/res/mnist_test.csv
  68. 10 0
      backup/preset/training/res/mnist_test_10.csv
  69. BIN
      backup/preset/training/res/mnist_train.zip
  70. 63 0
      backup/preset/training/res/mnist_train_100.csv
  71. BIN
      backup/preset/training/res/sans.ttf
  72. BIN
      backup/preset/training/res/sxsz.ttf
  73. BIN
      backup/user/NN10.pkl
  74. 0 0
      backup/user/model/.nomedia

BIN
backup/preset/audio/jump1.wav


BIN
backup/preset/fonts/HarmonyOS_Sans_Black.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Black_Italic.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Bold.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Bold_Italic.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Condensed_Black.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Condensed_Black_Italic.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Condensed_Bold.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Condensed_Bold_Italic.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Condensed_Light.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Condensed_Light_Italic.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Condensed_Medium.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Condensed_Medium_Italic.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Condensed_Regular.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Condensed_Regular_Italic.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Condensed_Thin.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Condensed_Thin_Italic.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Light.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Light_Italic.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Medium.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Medium_Italic.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_Black.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_Bold.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_Light.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_Medium.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_Regular.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_Thin.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_UI_Black.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_UI_Bold.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_UI_Light.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_UI_Medium.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_UI_Regular.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Naskh_Arabic_UI_Thin.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Regular.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Regular_Italic.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_TC_Black.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_TC_Bold.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_TC_Light.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_TC_Medium.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_TC_Regular.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_TC_Thin.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Thin.ttf


BIN
backup/preset/fonts/HarmonyOS_Sans_Thin_Italic.ttf


BIN
backup/preset/fonts/ScreenMatrix.ttf


BIN
backup/preset/fonts/SourceHanSansCN-Bold.otf


BIN
backup/preset/fonts/SourceHanSansCN-ExtraLight.otf


BIN
backup/preset/fonts/SourceHanSansCN-Heavy.otf


BIN
backup/preset/fonts/SourceHanSansCN-Light.otf


BIN
backup/preset/fonts/SourceHanSansCN-Medium.otf


BIN
backup/preset/fonts/SourceHanSansCN-Normal.otf


BIN
backup/preset/fonts/SourceHanSansCN-Regular.otf


BIN
backup/preset/fonts/botPixel.ttf


BIN
backup/preset/fonts/framdit.ttf


BIN
backup/preset/fonts/阿里巴巴普惠体H.ttf


BIN
backup/preset/fonts/阿里汉仪智能黑体.ttf


BIN
backup/preset/img/jumpbot/oneHeadThreeLeg_128_128.png


BIN
backup/preset/img/jumpbot/oneHeadThreeLeg_left_jump.png


BIN
backup/preset/img/jumpbot/oneHeadThreeLeg_left_nojump.png


BIN
backup/preset/img/jumpbot/oneHeadThreeLeg_middle_jump.png


BIN
backup/preset/img/jumpbot/oneHeadThreeLeg_middle_nojump.png


BIN
backup/preset/img/jumpbot/oneHeadThreeLeg_right_jump.png


BIN
backup/preset/img/jumpbot/oneHeadThreeLeg_right_nojump.png


+ 0 - 26
backup/preset/server/ccrb.crt

@@ -1,26 +0,0 @@
------BEGIN CERTIFICATE-----
-MIIEYjCCA0qgAwIBAgIJAOS8Bh4qCqhBMA0GCSqGSIb3DQEBCwUAMIGGMQswCQYD
-VQQGEwJDTjESMBAGA1UECAwJR3Vhbmdkb25nMREwDwYDVQQHDAhTaGVuemhlbjEV
-MBMGA1UECgwMQ29jb1JvYm8gTFREMRowGAYDVQQDDBFDb2NvUm9ibyBUcnVzdCBD
-QTEdMBsGCSqGSIb3DQEJARYOaXRAY29jb3JvYm8uY2MwHhcNMTgxMjI0MDg1ODIz
-WhcNMjExMDEzMDg1ODIzWjB+MQswCQYDVQQGEwJDTjESMBAGA1UECAwJR3Vhbmdk
-b25nMREwDwYDVQQHDAhTaGVuemhlbjEVMBMGA1UECgwMQ29jb1JvYm8gTFREMRIw
-EAYDVQQDDAlsb2NhbGhvc3QxHTAbBgkqhkiG9w0BCQEWDml0QGNvY29yb2JvLmNj
-MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAvk3cAwel+eWyJXAl9RB9
-rhxQHc4vDr/VshOy157/+jj6rUyDqRpdWh66DBmn429ReXzRsxhu5dhWUfWzztjW
-1pJ1159mC9TTGWWRqCKuVDNXtXq7QYD6apODjpk7U/lpKed4Gf6DWMtGk4BSAJ8g
-Y3k/R/bE6iCQHJLE/yVnWw/tw5P8lKRajUi36JzOKQ6l0cJqa1vFXjs9S64xzhlp
-HfKLPLzwEjIYVVJTShBQSVuNz9WcetQkID8FUm4uJg1XkFBJXY6pxXgTeeHpPEO2
-HgOIXaJi2clIshjgMGHkseP62coS8LyoDZ7uLJf8JhR8Rdb+Qn+n/54RbFWDGyUs
-mwIDAQABo4HZMIHWMIGlBgNVHSMEgZ0wgZqhgYykgYkwgYYxCzAJBgNVBAYTAkNO
-MRIwEAYDVQQIDAlHdWFuZ2RvbmcxETAPBgNVBAcMCFNoZW56aGVuMRUwEwYDVQQK
-DAxDb2NvUm9ibyBMVEQxGjAYBgNVBAMMEUNvY29Sb2JvIFRydXN0IENBMR0wGwYJ
-KoZIhvcNAQkBFg5pdEBjb2Nvcm9iby5jY4IJANpFK/+zAjUeMAkGA1UdEwQCMAAw
-CwYDVR0PBAQDAgTwMBQGA1UdEQQNMAuCCWxvY2FsaG9zdDANBgkqhkiG9w0BAQsF
-AAOCAQEAq7LoQ+AMK9SEw+HSPivOt8zE356FGvGxaXImwHA87vPPGozIN6nLYSey
-qtR0kxpRYU0Ki2zijqN4BZNZD7p6gRzbOA8pnO41tBUUmXIsgoYSKykuPVO8NkiA
-bdFo8m5TBOrkIJXf6rrfXOaFQbZ5n75H9N8UrdXKQz9sp13vfZYmltRt1+ya+0Xw
-h1mrnDMBZqFkttkKDu+nFoJTJcBZ0xUEh5u0gdFNZQDdQeZO+SYKtUIhdhVN+3HM
-JnQXM3eeTl/EzS8PvntQa0BV3M4jHO7W+7piOBD5exNmIFkHqd0f6h4MQ2b+rLsE
-MQFHzwA1WZLZKzUUlQe763uXn2KG5w==
------END CERTIFICATE-----

+ 0 - 27
backup/preset/server/ccrb.key

@@ -1,27 +0,0 @@
------BEGIN RSA PRIVATE KEY-----
-MIIEpQIBAAKCAQEAvk3cAwel+eWyJXAl9RB9rhxQHc4vDr/VshOy157/+jj6rUyD
-qRpdWh66DBmn429ReXzRsxhu5dhWUfWzztjW1pJ1159mC9TTGWWRqCKuVDNXtXq7
-QYD6apODjpk7U/lpKed4Gf6DWMtGk4BSAJ8gY3k/R/bE6iCQHJLE/yVnWw/tw5P8
-lKRajUi36JzOKQ6l0cJqa1vFXjs9S64xzhlpHfKLPLzwEjIYVVJTShBQSVuNz9Wc
-etQkID8FUm4uJg1XkFBJXY6pxXgTeeHpPEO2HgOIXaJi2clIshjgMGHkseP62coS
-8LyoDZ7uLJf8JhR8Rdb+Qn+n/54RbFWDGyUsmwIDAQABAoIBAE3OcZS/jMnWcvbB
-mpNO0cPdCZiWE0FZh5qOWUG1XX1FzKAMN4xtHhvZkkGeP7lKaypbsTUjWTwaLnjG
-F2UL3RLPwOSO5F8T/ddVYq82tsXwU/z8GBGZFUl71H76AXq875VVcRJXsAYe3lUy
-UtS0Or7Q9OGMcEg1VhaIn4ieF1rwPE6QvsWiXzDcqvA9GFqLfVHE4i88CwkeBKdB
-S52HkXruVExekwITJxo6pcj61BRD8xLypFyy923+ONPSjACtetbukA9QFOsOvFSQ
-kymCaR65in5smkMrFeiTa6srDtIvUxFMdhnOmPbsmWsrR2k98ZMi+85k1OOG8vXO
-JeIAxSECgYEA7b6tTyql2RCiPoS2HiCJVsjcpwz/Pv0BduR6zNNn59HzVO3hZ+td
-Y3mAtU2ix7WK5A+9ezw4ge40TrolHxYgpUBkCrATVBxOKKChvNhRQ/Tc/26ewDrl
-1U0l0B/qi30+INwbC6gXSV2vvL5rRcCjBfTVOJ2xAxLtfcCVkMVyufECgYEAzOql
-aSC5FoSSaaL1FHMRlQjbe8UG2fdlMNAuSzkqVa2QfQefvTpFk3RD4hJR38HHenph
-m1xdlqoGSp1pjcGFCj5UfSSee01kIFa3CZ9eGqxb8JXnJex7oGC+F8mzwjYqYetr
-wTi46PeX+w+Gnq2e1gI8/QjNlL8F6KCqhRoo40sCgYEAvq/iaA4H6dt6lnRxciac
-oXwH5wD4tTfO9eJ6UFD8FScDacpGschJJmEtB75WYqJM3XF2hCKgHC7Hy6Fn5tAj
-rQfBdgUV66+sTM/SChriy4PZwhKiyAI1l+kB/DWtNOZmb4q7MpVG4DSBoPyGI/NH
-jp56aqeoc5O54tQV4oFL7LECgYEAibUel/l/qNxKsGbsoGN761XaeeC8a/pPrHAa
-zD6MbquHMB7RgI8Kdr9pZyG8l8xXy702nvuBgWCdfcMvTi5Aw9ODX94eCurFYN4l
-f3fz+6Tc3F9AyUGVCwA4fy/zd46DCO72qRD/YsARCI00gKpY1aUHa1xhG5cL13sx
-XOVpmOUCgYEA2mh8UCY5ANQ3McXBx346+RxKLZnDkntyS6A9JbZSWgp2ca8TfpXS
-XQgdmDkz6VNO3I6tasqRqZVcTFpVSRpkmyCob7cu7XpZ5hUZjK4a+5xUR+KBZ1LI
-OAFAJ9JjDwcTEujArla4aUAntxvKBWGv2LHKVluy5aOGGfKTzUDWbro=
------END RSA PRIVATE KEY-----

+ 0 - 88
backup/preset/server/wirelessServer.py

@@ -1,88 +0,0 @@
-import asyncio
-import websockets
-import ssl
-import os
-import signal
-import linecache
-
-
-ssl._create_default_https_context = ssl._create_unverified_context
-ssl_context = ssl.SSLContext(ssl.PROTOCOL_SSLv23)
-ssl_context.load_cert_chain("/root/preset/server/ccrb.crt", "/root/preset/server/ccrb.key")
-p1 = None
-p2 = None
-p3 = None
-countn = 0
-
-async def send(websocket):
-    global p2
-    global p1
-    global countn
-    await asyncio.create_subprocess_shell("echo > /root/event.log &")
-    #open("/root/event.log", 'w').close()
-    while True:
-        await asyncio.sleep(0.03)
-        if True:
-            try:
-                proxy_recv_msg = ""
-                linecache.clearcache()
-                logarr = linecache.getlines("/root/event.log")[-20:]
-                open("/root/event.log", 'w').close()
-                #os.remove(r'/root/event.log')
-                #await asyncio.create_subprocess_shell("echo '' > /root/event.log")
-                #print(linecache.getlines("/root/event.log")[-10:])
-                proxy_recv_msg = "".join(logarr).rstrip('\x00')
-                #print(len(logarr))
-                if proxy_recv_msg != "" and proxy_recv_msg != "\n":                                                                         
-                    try:                                                                                         
-                        await websocket.send(proxy_recv_msg)
-                    except websockets.ConnectionClosed:
-                        try:
-                            if p1.returncode == None:                                                                                                                                                
-                                os.killpg(p1.pid, signal.SIGUSR1)
-                            #open("/root/event.log", 'w').close()
-                            #await asyncio.create_subprocess_shell("echo "" > /root/event.log")                                                                                                                
-                        finally:                                                                                                                                             
-                            pass                                                           
-                        pass 
-            finally:                                                                                         
-                pass
-
-async def receive(websocket):
-    global p2
-    global p3
-    global p1    
-#    if p2 == None and p3 == None:
-#        p2 = await asyncio.create_subprocess_shell("echo '' > /tmp/event.log && tail -f /tmp/event.log", stdout=asyncio.subprocess.PIPE, preexec_fn = os.setsid)
-#        p3 = p2
-#    else:
-#        p2 = p3
-
-    while True:
-        await asyncio.sleep(0.5)
-        recv_text = await websocket.recv()
-        if p1 != None:
-            try:
-                if p1.returncode == None:
-                    p1.kill()
-                    os.killpg(p1.pid, signal.SIGUSR1)
-            finally:
-                pass
-        p1 = await asyncio.create_subprocess_shell(recv_text, stdout=None, preexec_fn = os.setsid)
-        print(p1.pid)
-
-async def main_logic(websocket, path):
-        await runstart(websocket, path)
-        asyncio.run(runstart(websocket, path))
-
-async def runstart(websocket, path):
-        a = asyncio.create_task(send(websocket))
-        b = asyncio.create_task(receive(websocket))
-        await a
-        await b
-
-
-start_server = websockets.serve(main_logic, '0.0.0.0', 5678, ssl=ssl_context)
-
-asyncio.get_event_loop().run_until_complete(start_server)        
-asyncio.get_event_loop().run_forever()

+ 175 - 0
backup/preset/training/res/README.md

@@ -0,0 +1,175 @@
+## 在 CocoPi 上使用 numpy + mnist 训练模型导出导入验证的教程
+
+测试集位于 mnist_test.csv ;
+
+训练集位于 mnist_train.zip (csv格式超过可上传最大值);
+
+code包括神经网络模型和用测试、训练数据跑出的最优模型;
+
+数据集:MINIST;
+
+不可使用 pytorch,tensorflow 等 python package,可以使用numpy;
+
+## 准备数据集
+
+CSV 文件内容介绍:(https://blog.csdn.net/CVSvsvsvsvs/article/details/85127096)
+
+![](./dataset.png)
+
+更多数据集可以自己寻找或制作:[制作minist格式的图像数据集](https://blog.csdn.net/vertira/article/details/122326362)
+
+## 在板子上训练
+
+这里演示十分钟即可在 wiki.sipeed.com/m2dock 上训练 mnist 模型,精简数据集为 100 测试 10 验证,可快速体验效果。
+
+00_demo.ipynb 01_min_train.py 02_val_mnist.py
+
+完整的演示过程 00_demo.ipynb 其他脚本可以直接在板子依次运行。
+
+使用 numpy 训练要打开 numpy.random 模块
+
+`rm -rf /usr/lib/python3.8/site-packages/numpy/random/__init__.py`
+
+想恢复就用
+
+`touch /usr/lib/python3.8/site-packages/numpy/random/__init__.py`
+
+该功能只影响开机加载 numpy 的速度以及内存占用,因为 maixpy3 底层是应用了 numpy 进行部分后处理转换的,所以会发现部署 AI 应用的时候开机速度很慢。
+
+
+```bash
+
+cd NeuralNetwork
+
+adb push mnist_test_10.csv mnist_train_100.csv 01_min_train.py 02_val_mnist.py /root
+
+adb push resc /root/resc
+
+adb shell
+
+rm -rf /usr/lib/python3.8/site-packages/numpy/random/__init__.py
+
+cd /root/
+
+python 01_min_train.py # 训练模型并导出
+
+python 02_val_mnist.py # 加载模型并验证
+
+```
+
+运行结果如下:
+
+```bash
+juwan@juwan-n85-dls:~$ cd NeuralNetwork
+juwan@juwan-n85-dls:~/NeuralNetwork$
+juwan@juwan-n85-dls:~/NeuralNetwork$ adb push mnist_test_10.csv mnist_train_100.csv 01_min_train.py 02_val_mnist.py /root
+mnist_test_10.csv: 1 file pushed. 3.4 MB/s (18006 bytes in 0.005s)
+mnist_train_100.csv: 1 file pushed. 4.2 MB/s (182023 bytes in 0.041s)
+01_min_train.py: 1 file pushed. 2.0 MB/s (4940 bytes in 0.002s)
+02_val_mnist.py: 1 file pushed. 2.1 MB/s (3972 bytes in 0.002s)
+4 files pushed. 3.8 MB/s (208941 bytes in 0.053s)
+juwan@juwan-n85-dls:~/NeuralNetwork$
+juwan@juwan-n85-dls:~/NeuralNetwork$ adb push resc /root/resc
+resc/: 6 files pushed. 3.6 MB/s (13866458 bytes in 3.723s)
+juwan@juwan-n85-dls:~/NeuralNetwork$
+juwan@juwan-n85-dls:~/NeuralNetwork$ adb shell
+
+
+BusyBox v1.27.2 () built-in shell (ash)
+
+------run profile file-----
+=========================================================
+    ______                         ______
+   /\  _  \                       /\  _  \  __
+   \ \ \/\_\    ____    ____   ___\ \ \_\ \/\_\
+    \ \ \/_/_  / __ \  / __ \ / __'\ \  __/\/_/_
+     \ \ \_\ \/\ \_\ \/\ \__//\ \_\ \ \ \/   /\ \
+      \ \____/\ \____/\ \____\ \____/\ \_\   \ \_\
+       \/___/  \/___/  \/____/\/___/  \/_/    \/_/
+  __
+ /\ \       __                           ----------------
+ \ \ \     /\_\    ____  __  __  __  _    pi.cocorobo.hk
+  \ \ \    \/_/_ /  _  \/\ \/\ \/\ \/ \  ----------------
+   \ \ \____ /\ \/\ \/\ \ \ \_\ \/>  </   SYSTEM VERSION
+    \ \_____\\ \_\ \_\ \_\ \____//\_/\_\  - V6 23.0825 -
+     \/_____/ \/_/\/_/\/_/\/___/ \//\/_/ ----------------
+
+=========================================================
+
+root@CocoPi:/#
+root@CocoPi:/# rm -rf /usr/lib/python3.8/site-packages/numpy/random/__init__.py
+root@CocoPi:/#
+root@CocoPi:/# cd /root/
+root@CocoPi:/#
+root@CocoPi:~# python 01_min_train.py # 训练模型并导出
+(100, 785)
+(10, 785)
+准确度50.00%
+隐藏层节点数512,学习率0.100000,准确度60.00%
+隐藏层节点数512,学习率0.200000,准确度50.00%
+隐藏层节点数512,学习率0.300000,准确度60.00%
+隐藏层节点数256,学习率0.100000,准确度60.00%
+隐藏层节点数256,学习率0.200000,准确度60.00%
+隐藏层节点数256,学习率0.300000,准确度50.00%
+隐藏层节点数128,学习率0.100000,准确度60.00%
+隐藏层节点数128,学习率0.200000,准确度60.00%
+隐藏层节点数128,学习率0.300000,准确度60.00%
+第1次训练,准确度50.00%
+第2次训练,准确度60.00%
+第3次训练,准确度70.00%
+第4次训练,准确度70.00%
+第5次训练,准确度70.00%
+第6次训练,准确度70.00%
+第7次训练,准确度70.00%
+第8次训练,准确度70.00%
+第9次训练,准确度70.00%
+第10次训练,准确度70.00%
+root@sipeed:~#
+root@sipeed:~# python 02_val_mnist.py # 加载模型并验证
+NeuralNetwork:
+input_nodes = 784, hidden_nodes = 128,
+outputnodes = 10, learningrate = 0.025
+(1, 784)
+save:  ./imgs/sxsz.ttf_0_6.png
+(1, 784)
+save:  ./imgs/sxsz.ttf_1_6.png
+(1, 784)
+save:  ./imgs/sxsz.ttf_2_8.png
+(1, 784)
+save:  ./imgs/sxsz.ttf_3_3.png
+(1, 784)
+save:  ./imgs/sxsz.ttf_4_9.png
+(1, 784)
+save:  ./imgs/sxsz.ttf_5_6.png
+(1, 784)
+save:  ./imgs/sxsz.ttf_6_6.png
+(1, 784)
+save:  ./imgs/sxsz.ttf_7_1.png
+(1, 784)
+save:  ./imgs/sxsz.ttf_8_6.png
+(1, 784)
+save:  ./imgs/sxsz.ttf_9_7.png
+(1, 784)
+save:  ./imgs/sans.ttf_0_2.png
+(1, 784)
+save:  ./imgs/sans.ttf_1_1.png
+(1, 784)
+save:  ./imgs/sans.ttf_2_2.png
+(1, 784)
+save:  ./imgs/sans.ttf_3_3.png
+(1, 784)
+save:  ./imgs/sans.ttf_4_3.png
+(1, 784)
+save:  ./imgs/sans.ttf_5_6.png
+(1, 784)
+save:  ./imgs/sans.ttf_6_6.png
+(1, 784)
+save:  ./imgs/sans.ttf_7_2.png
+(1, 784)
+save:  ./imgs/sans.ttf_8_6.png
+(1, 784)
+save:  ./imgs/sans.ttf_9_4.png
+root@sipeed:~#
+```
+
+可见 sans,ttf 字体的识别效果在 0 1 2 3 6 有一定的正确性,如果想要更好的,可以拿完整的 60000 : 10000 训练,这里为了快速演示效果,采用了 100 : 10

Datei-Diff unterdrückt, da er zu groß ist
+ 25 - 0
backup/preset/training/res/mnist_test.csv


+ 10 - 0
backup/preset/training/res/mnist_test_10.csv

@@ -0,0 +1,10 @@
+7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,84,185,159,151,60,36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,222,254,254,254,254,241,198,198,198,198,198,198,198,198,170,52,0,0,0,0,0,0,0,0,0,0,0,0,67,114,72,114,163,227,254,225,254,254,254,250,229,254,254,140,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,66,14,67,67,67,59,21,236,254,106,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,83,253,209,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,22,233,255,83,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,129,254,238,44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,59,249,254,62,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,133,254,187,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,205,248,58,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,126,254,182,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75,251,240,57,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,19,221,254,166,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,203,254,219,35,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,38,254,254,77,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,31,224,254,115,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,133,254,254,52,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,61,242,254,254,52,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,121,254,254,219,40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,121,254,207,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
+2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,116,125,171,255,255,150,93,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,253,253,253,253,253,253,218,30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,253,253,253,213,142,176,253,253,122,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,52,250,253,210,32,12,0,6,206,253,140,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,77,251,210,25,0,0,0,122,248,253,65,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,31,18,0,0,0,0,209,253,253,65,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,117,247,253,198,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,76,247,253,231,63,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,128,253,253,144,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,176,246,253,159,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,25,234,253,233,35,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,198,253,253,141,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,78,248,253,189,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,19,200,253,253,141,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,134,253,253,173,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,248,253,253,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,248,253,253,43,20,20,20,20,5,0,5,20,20,37,150,150,150,147,10,0,0,0,0,0,0,0,0,0,248,253,253,253,253,253,253,253,168,143,166,253,253,253,253,253,253,253,123,0,0,0,0,0,0,0,0,0,174,253,253,253,253,253,253,253,253,253,253,253,249,247,247,169,117,117,57,0,0,0,0,0,0,0,0,0,0,118,123,123,123,166,253,253,253,155,123,123,41,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
+1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,38,254,109,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,87,252,82,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,135,241,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,244,150,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,84,254,63,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,202,223,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,254,216,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,95,254,195,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,140,254,77,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,57,237,205,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,124,255,165,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,171,254,81,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,232,215,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,120,254,159,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,151,254,142,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,228,254,66,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,61,251,254,66,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,141,254,205,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,215,254,121,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,198,176,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
+0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,150,253,202,31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,37,251,251,253,107,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,21,197,251,251,253,107,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,110,190,251,251,251,253,169,109,62,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,253,251,251,251,251,253,251,251,220,51,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,182,255,253,253,253,253,234,222,253,253,253,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,63,221,253,251,251,251,147,77,62,128,251,251,105,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,231,251,253,251,220,137,10,0,0,31,230,251,243,113,5,0,0,0,0,0,0,0,0,0,0,0,0,37,251,251,253,188,20,0,0,0,0,0,109,251,253,251,35,0,0,0,0,0,0,0,0,0,0,0,0,37,251,251,201,30,0,0,0,0,0,0,31,200,253,251,35,0,0,0,0,0,0,0,0,0,0,0,0,37,253,253,0,0,0,0,0,0,0,0,32,202,255,253,164,0,0,0,0,0,0,0,0,0,0,0,0,140,251,251,0,0,0,0,0,0,0,0,109,251,253,251,35,0,0,0,0,0,0,0,0,0,0,0,0,217,251,251,0,0,0,0,0,0,21,63,231,251,253,230,30,0,0,0,0,0,0,0,0,0,0,0,0,217,251,251,0,0,0,0,0,0,144,251,251,251,221,61,0,0,0,0,0,0,0,0,0,0,0,0,0,217,251,251,0,0,0,0,0,182,221,251,251,251,180,0,0,0,0,0,0,0,0,0,0,0,0,0,0,218,253,253,73,73,228,253,253,255,253,253,253,253,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,113,251,251,253,251,251,251,251,253,251,251,251,147,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,31,230,251,253,251,251,251,251,253,230,189,35,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,62,142,253,251,251,251,251,253,107,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,72,174,251,173,71,72,30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
+4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,50,224,0,0,0,0,0,0,0,70,29,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,121,231,0,0,0,0,0,0,0,148,168,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,195,231,0,0,0,0,0,0,0,96,210,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,69,252,134,0,0,0,0,0,0,0,114,252,21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,236,217,12,0,0,0,0,0,0,0,192,252,21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,168,247,53,0,0,0,0,0,0,0,18,255,253,21,0,0,0,0,0,0,0,0,0,0,0,0,0,84,242,211,0,0,0,0,0,0,0,0,141,253,189,5,0,0,0,0,0,0,0,0,0,0,0,0,0,169,252,106,0,0,0,0,0,0,0,32,232,250,66,0,0,0,0,0,0,0,0,0,0,0,0,0,15,225,252,0,0,0,0,0,0,0,0,134,252,211,0,0,0,0,0,0,0,0,0,0,0,0,0,0,22,252,164,0,0,0,0,0,0,0,0,169,252,167,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,204,209,18,0,0,0,0,0,0,22,253,253,107,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,252,199,85,85,85,85,129,164,195,252,252,106,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,41,170,245,252,252,252,252,232,231,251,252,252,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,49,84,84,84,84,0,0,161,252,252,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,127,252,252,45,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,128,253,253,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,127,252,252,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,135,252,244,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,232,236,111,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,179,66,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
+1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,77,254,107,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,19,227,254,254,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,81,254,254,165,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,203,254,254,73,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,53,254,254,250,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,134,254,254,180,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,196,254,248,48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,58,254,254,237,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,111,254,254,132,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,163,254,238,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,252,254,223,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,79,254,254,154,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,163,254,238,53,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,28,252,254,210,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,86,254,254,131,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,105,254,234,20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,175,254,204,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,211,254,196,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,158,254,160,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,26,157,107,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
+4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,22,192,134,32,0,0,0,0,0,0,0,0,15,77,5,0,0,0,0,0,0,0,0,0,0,0,0,17,235,250,169,0,0,0,0,0,0,0,0,15,220,241,37,0,0,0,0,0,0,0,0,0,0,0,20,189,253,147,0,0,0,0,0,0,0,0,0,139,253,100,0,0,0,0,0,0,0,0,0,0,0,0,70,253,253,21,0,0,0,0,0,0,0,0,43,254,173,13,0,0,0,0,0,0,0,0,0,0,0,22,153,253,96,0,0,0,0,0,0,0,0,43,231,254,92,0,0,0,0,0,0,0,0,0,0,0,0,163,255,204,11,0,0,0,0,0,0,0,0,104,254,158,0,0,0,0,0,0,0,0,0,0,0,0,0,162,253,178,5,0,0,0,0,0,0,9,131,237,253,0,0,0,0,0,0,0,0,0,0,0,0,0,0,162,253,253,191,175,70,70,70,70,133,197,253,253,169,0,0,0,0,0,0,0,0,0,0,0,0,0,0,51,228,253,253,254,253,253,253,253,254,253,253,219,35,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,65,137,254,232,137,137,137,44,253,253,161,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,34,254,206,21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,160,253,69,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,85,254,241,50,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,158,254,165,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,231,244,50,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,104,254,232,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,208,253,157,0,13,30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,208,253,154,91,204,161,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,208,253,254,253,154,29,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,61,190,128,23,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
+9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,149,193,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,91,224,253,253,19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,28,235,254,253,253,166,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,144,253,254,253,253,253,238,115,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,31,241,253,208,185,253,253,253,231,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,79,254,193,0,8,98,219,254,255,201,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,86,253,80,0,0,0,182,253,254,191,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,175,253,155,0,0,0,234,253,254,135,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,86,253,208,40,85,166,251,237,254,236,42,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,238,253,254,253,253,185,36,216,253,152,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,68,240,255,254,145,8,0,134,254,223,35,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,68,158,142,12,0,0,9,175,253,161,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,88,253,226,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,166,253,126,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,48,245,253,38,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,115,254,172,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,21,218,254,46,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,30,254,165,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,186,244,42,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,223,78,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
+5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,47,47,47,16,129,85,47,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75,153,217,253,253,253,215,246,253,253,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,35,142,244,252,253,253,253,253,253,253,253,253,253,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,63,253,253,253,253,253,253,253,213,170,170,170,170,0,0,0,0,0,0,0,0,0,0,0,20,132,72,0,57,238,227,238,168,124,69,20,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,206,253,78,0,0,32,0,30,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,177,253,132,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,133,253,233,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,92,253,223,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,150,253,174,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,234,253,246,127,49,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,253,253,253,251,147,91,121,85,42,42,85,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,139,253,253,253,253,253,253,253,253,253,253,253,232,168,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,53,218,222,251,253,253,253,253,253,253,253,253,252,124,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,67,72,200,253,253,253,253,253,253,253,175,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,120,253,249,152,51,164,253,253,175,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,50,253,253,253,188,252,253,253,148,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,167,253,253,253,253,250,175,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23,180,231,253,221,128,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,93,149,22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
+9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,36,56,137,201,199,95,37,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,152,234,254,254,254,254,254,250,211,151,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,46,153,240,254,254,227,166,133,251,200,254,229,225,104,0,0,0,0,0,0,0,0,0,0,0,0,0,153,234,254,254,187,142,8,0,0,191,40,198,246,223,253,21,0,0,0,0,0,0,0,0,0,0,8,126,253,254,233,128,11,0,0,0,0,210,43,70,254,254,254,21,0,0,0,0,0,0,0,0,0,0,72,243,254,228,54,0,0,0,0,3,32,116,225,242,254,255,162,5,0,0,0,0,0,0,0,0,0,0,75,240,254,223,109,138,178,178,169,210,251,231,254,254,254,232,38,0,0,0,0,0,0,0,0,0,0,0,9,175,244,253,255,254,254,251,254,254,254,254,254,252,171,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,136,195,176,146,153,200,254,254,254,254,150,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,162,254,254,241,99,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,118,250,254,254,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,100,242,254,254,211,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,54,241,254,254,242,59,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,131,254,254,244,64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,249,254,254,152,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,228,254,254,208,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,78,255,254,254,66,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,209,254,254,137,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,227,255,233,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,113,255,108,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

BIN
backup/preset/training/res/mnist_train.zip


Datei-Diff unterdrückt, da er zu groß ist
+ 63 - 0
backup/preset/training/res/mnist_train_100.csv


BIN
backup/preset/training/res/sans.ttf


BIN
backup/preset/training/res/sxsz.ttf


BIN
backup/user/NN10.pkl


+ 0 - 0
backup/user/model/.nomedia


Einige Dateien werden nicht angezeigt, da zu viele Dateien in diesem Diff geändert wurden.