123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 |
- '''
- Face recognize demo, download model from maixhub first:
- https://maixhub.com/
- '''
- from maix import nn, display, camera, image
- from maix.nn.app import face
- from maix.nn.app.face import FaceRecognize
- import time
- import sys
- sys.path.append('/root/')
- from CocoPi import BUTTON
- key_A = BUTTON(14)
- key_B = BUTTON(8)
- key_C = BUTTON(13)
- key_D = BUTTON(7)
- ScreenOrientation = False
- class Face_Recognizer:
- def __init__(self, threshold = 0.5, nms = 0.3, max_face_num = 1):
- model = "/root/preset/model/retinaface.mud"
- model_fe = "/root/preset/model/fe_resnet.mud"
- self.input_size = (224, 224, 3)
- input_size_fe = (128, 128, 3)
- self.feature_len = 256
- self.features = []
- print("-- load model:", model)
- m = nn.load(model)
- print("-- load ok")
- print("-- load model:", model_fe)
- m_fe = nn.load(model_fe)
- print("-- load ok")
- self.recognizer = FaceRecognize(m, m_fe, self.feature_len, self.input_size, threshold, nms, max_face_num)
- print("-- init end")
- def get_faces(self, img, std_img = False):
- faces = self.recognizer.get_faces(img, std_img)
- return faces
- def __len__(self):
- return len(self.features)
- def add_user(self, name, feature):
- self.features.append([name, feature])
- return True
- def remove_user(self, name_del):
- rm = None
- for name, feature in self.features:
- if name_del == name:
- rm = [name, feature]
- if rm:
- self.features.remove(rm)
- return True
- return False
- def recognize(self, feature):
- max_score = 0
- uid = -1
- for i, user in enumerate(self.features):
- score = self.recognizer.compare(user[1], feature)
- if score > max_score:
- max_score = score
- uid = i
- if uid >= 0:
- return self.features[uid][0], max_score
- return None, 0
- def get_input_size(self):
- '''
- @return input_size (w, h, c)
- '''
- return self.input_size
- def get_feature_len(self):
- return self.feature_len
- def darw_info(self, img, box, points, disp_str, bg_color=(255, 0, 0, 255), font_color=(255, 255, 255, 255), font_size=32):
- font_wh = image.get_string_size(disp_str)
- for p in points:
- img.draw_rectangle(p[0] - 1, p[1] -1, p[0] + 1, p[1] + 1, color=bg_color)
- img.draw_rectangle(box[0], box[1], box[0] + box[2], box[1] + box[3], color=bg_color, thickness=2)
- if disp_str:
- img.draw_rectangle(box[0], box[1] - font_wh[1], box[0] + font_wh[0], box[1], color=bg_color, thickness = -1)
- img.draw_string(box[0], box[1] - font_wh[1], disp_str, color=font_color)
- def darw_title(self, img, dis_size ,key_l = None, key_r =None):
- if key_C:
- key_l = "| "+ key_l
- img.draw_string( 1, 2 ,key_l , scale = 1, color = (255, 255, 255), thickness = 2)
- if key_D:
- key_r = key_r+" |"
- w = int(dis_size[0] - 4 - image.get_string_size(key_r)[0] * 1)
- img.draw_string( w, 2 ,key_r , scale = 1, color = (255, 255, 255), thickness = 2)
- max_face_num = 4
- detect_threshold = 0.5
- detect_nms = 0.3
- score_threshold = 70
- names = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"]
- face_recognizer = Face_Recognizer(detect_threshold, detect_nms, max_face_num = max_face_num)
- camera.config(size=face_recognizer.get_input_size()[:2])
- def lcdRotation(inputImg,rotationAngle):
- from maix import image
- imageRotationBuffer = inputImg.crop(0, 0, 240, 320)
- if ScreenOrientation:
- imgRotationAim = image.new(size = (240, 320))
- else:
- imgRotationAim = image.new(size = (320, 240))
- return imgRotationAim.draw_image(imageRotationBuffer.rotate(rotationAngle, adjust=1),0,0,alpha=1)
- if ScreenOrientation:
- CAMERAROTATE = +180
- else:
- CAMERAROTATE = +90
- canvasImg = image.new(size = (240, 320))
- while 1:
- canvasImg.clear()
- img = camera.capture().crop(0, 0,224, 224)
- if not img:
- time.sleep(0.02)
- continue
- faces = face_recognizer.get_faces(img)
- face_recognizer.darw_title(img , face_recognizer.get_input_size()[:2] , "rm" ,"add")
- if faces:
- # for prob, box, landmarks, feature, std_img in faces:
- for prob, box, landmarks, feature in faces:
- # [ prob, [x,y,w,h], [[x,y], [x,y], [x,y], [x,y], [x,y]], feature ]
- if key_C.is_pressed():
- if len(face_recognizer) < len(names):
- while not (key_C.is_pressed() == False):
- time.sleep(0.1)
- idx = len(face_recognizer)
- print("add user: {}, {}".format(idx, names[idx]))
- face_recognizer.add_user(names[idx], feature)
- else:
- print("user full")
- name, score = face_recognizer.recognize(feature)
- if name:
- if score > score_threshold:
- face_recognizer.darw_info(img, box, landmarks, "{}:{:.2f}".format(name, score), font_color=(0, 0, 255, 255), bg_color=(0, 255, 0, 255))
- print("user: {}, score: {:.2f}".format(name, score))
- else:
- face_recognizer.darw_info(img, box, landmarks, "{}:{:.2f}".format(name, score), font_color=(255, 255, 255, 255), bg_color=(255, 0, 0, 255))
- print("maybe user: {}, score: {:.2f}".format(name, score))
- else:
- face_recognizer.darw_info(img, box, landmarks, "", font_color=(255, 255, 255, 255), bg_color=(255, 255, 255, 255))
- if key_D.is_pressed():
- if len(face_recognizer) > 0:
- while not (key_D.is_pressed() == False):
- time.sleep(0.1)
- idx = len(face_recognizer) - 1
- print("remove user:", names[idx])
- face_recognizer.remove_user(names[idx])
- else:
- print("user empty")
- canvasImg.draw_image(img,48,8)
- canvasImg.draw_image((image.open("/root/preset/img/exit_ff0000_24x24.png")).rotate(0, adjust=0),288,216,alpha=1)
- display.show(canvasImg)
|