123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- #!/usr/bin/env python
- #version : 2023.12.31
- #language : ch
- from maix import camera
- from maix import display
- from maix import image
- from maix import nn
- from maix.nn import decoder
- import os
- import numpy as np
- def sigmoid(x):
- return 1/(1+np.exp(-x))
- def grad(x):
- return x*(1-x)
- class NeuralNetwork:
- """
- 三层全连接前馈神经网络
- """
- def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate, active_function=sigmoid, gradient=grad, lambda_=0.1):
- """
- :param inputnodes: 输入层结点数
- :param hiddennodes: 隐藏层节点数
- :param outputnodes: 输出层节点数
- :param learningrate: 学习率
- :param active_function: 激活函数
- :param gradient: 激活函数的导数
- :param lambda_: L2正则化系数
- """
- self.inputnodes = inputnodes
- self.hiddennodes = hiddennodes
- self.outputnodes = outputnodes
- self.learningrate = learningrate
- self.active_function = active_function
- self.gradient = gradient
- self.lambda_ = lambda_
- # 权值矩阵
- self.weights_i_h = np.random.rand(self.hiddennodes, self.inputnodes) - 0.5
- self.weights_h_o = np.random.rand(self.outputnodes, self.hiddennodes) - 0.5
- def train_sgd(self, x, y):
- """梯度下降训练"""
- train_x = np.array(x).reshape(-1,1)
- target = np.zeros((self.outputnodes,1)) + 0.01
- target[y,0] = 0.99
- hiddeninputs = np.dot(self.weights_i_h, train_x)
- hiddenoutputs = self.active_function(hiddeninputs)
- outputinputs = np.dot(self.weights_h_o, hiddenoutputs)
- final_outputs = self.active_function(outputinputs)
- error = target - final_outputs
- hidden_error = np.dot(self.weights_h_o.transpose(), error)
- self.weights_h_o += self.learningrate * error * np.dot(self.gradient(final_outputs), hiddenoutputs.transpose())
- self.weights_i_h += self.learningrate * hidden_error * np.dot(self.gradient(hiddenoutputs), train_x.transpose())
- def fit(self, train_x, targets):
- train_x = np.array(train_x)
- for i in range(train_x.shape[0]):
- self.train_sgd(train_x[i], targets[i])
- def query(self, inputs, debug=False):
- """单个值预测"""
- inputs = np.array(inputs).reshape(-1,1)
- hidden_input = np.dot(self.weights_i_h, inputs)
- hidden_output = self.active_function(hidden_input)
- output_input = np.dot(self.weights_h_o, hidden_output)
- final_output = self.active_function(output_input)
- if debug:
- print('predict: ', final_output)
- return np.argmax(final_output)
- def predict(self,inputs):
- """批量预测"""
- res = []
- for x in inputs:
- res.append(self.query(x))
- return res
- def __str__(self):
- return "NeuralNetwork: \ninput_nodes = {0}, hidden_nodes = {1}, \noutputnodes = {2}, learningrate = {3}".format(
- self.inputnodes, self.hiddennodes, self.outputnodes, self.learningrate
- )
- image.load_freetype("/root/preset/fonts/CascadiaCodePL-Italic.ttf")
- import pickle
- if os.path.exists('/root/user/model/NN10.pkl'):
- with open('/root/user/model/NN10.pkl','rb') as f:
- b_data = pickle.load(f)
- net_model = pickle.loads(b_data)
- else:
- # 最佳模型,载入最佳模型
- with open('/root/user/NN10.pkl','rb') as f:
- b_data = pickle.load(f)
- net_model = pickle.loads(b_data)
- print(net_model)
- camera.camera.config(size=(320, 240))
- img_path="/root/user/image_1.png"
- img_gray_path="/root/user/image_gray.png"
- while True:
- img = camera.capture() #从摄像头中获取一张图像
- mk = img.crop(0, 0, 240, 240) #裁剪图像为320*240
- mk1=img.crop(0, 0, 240, 240).resize(224,224) #继续裁剪图像为224*224
- canvas= image.new(size = (320, 240), color = (0,255,0), mode = 'RGB') #创建背景图
- canvas.draw_image(mk1,58,8) #贴224*224的图片
- mk2=mk1.resize(28,28) #裁剪图片为28*28
- canvas.draw_image(mk2,8,8) #贴28*28的图
- mk2.save(img_path)
- from PIL import Image
- origin=Image.open(img_path).convert('L') #转为8位分辨率灰度图(0~255)
- origin.save(img_gray_path)
- origin_gray=image.open(img_gray_path)
- canvas.draw_image(origin_gray,8,48)
- img = np.array(origin).reshape(1, 784).astype('int')
- img = img / 255 * 0.99 + 0.01
- print(img.shape)
- tmp = net_model.query(img)
- print(tmp)
- if tmp:
- canvas.draw_string(12,80, str(tmp), scale = 5, color = (255,0,0) , thickness = 1)
- display.show(canvas) #将图像显示出来
|