1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009 |
- [net]
- # Training
- batch=120
- subdivisions=4
- # Testing
- #batch=1
- #subdivisions=1
- height=224
- width=224
- channels=3
- momentum=0.9
- decay=0.0005
- max_crop=256
- #mixup=4
- blur=1
- cutmix=1
- mosaic=1
- burn_in=1000
- #burn_in=100
- learning_rate=0.256
- policy=poly
- power=4
- max_batches=800000
- momentum=0.9
- decay=0.00005
- angle=7
- hue=.1
- saturation=.75
- exposure=.75
- aspect=.75
- ### CONV1 - 1 (1)
- # conv1
- [convolutional]
- filters=32
- size=3
- pad=1
- stride=2
- batch_normalize=1
- activation=swish
- ### CONV2 - MBConv1 - 1 (1)
- # conv2_1_expand
- [convolutional]
- filters=32
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- # conv2_1_dwise
- [convolutional]
- groups=32
- filters=32
- size=3
- stride=1
- pad=1
- batch_normalize=1
- activation=swish
- #squeeze-n-excitation
- [avgpool]
- # squeeze ratio r=4 (recommended r=16)
- [convolutional]
- filters=8
- size=1
- stride=1
- activation=swish
- # excitation
- [convolutional]
- filters=32
- size=1
- stride=1
- activation=logistic
- # multiply channels
- [scale_channels]
- from=-4
- # conv2_1_linear
- [convolutional]
- filters=16
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=linear
- ### CONV3 - MBConv6 - 1 (2)
- # conv2_2_expand
- [convolutional]
- filters=96
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- # conv2_2_dwise
- [convolutional]
- groups=96
- filters=96
- size=3
- pad=1
- stride=2
- batch_normalize=1
- activation=swish
- #squeeze-n-excitation
- [avgpool]
- # squeeze ratio r=8 (recommended r=16)
- [convolutional]
- filters=16
- size=1
- stride=1
- activation=swish
- # excitation
- [convolutional]
- filters=96
- size=1
- stride=1
- activation=logistic
- # multiply channels
- [scale_channels]
- from=-4
- # conv2_2_linear
- [convolutional]
- filters=24
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=linear
- ### CONV3 - MBConv6 - 2 (2)
- # conv3_1_expand
- [convolutional]
- filters=144
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- # conv3_1_dwise
- [convolutional]
- groups=144
- filters=144
- size=3
- stride=1
- pad=1
- batch_normalize=1
- activation=swish
- #squeeze-n-excitation
- [avgpool]
- # squeeze ratio r=16 (recommended r=16)
- [convolutional]
- filters=8
- size=1
- stride=1
- activation=swish
- # excitation
- [convolutional]
- filters=144
- size=1
- stride=1
- activation=logistic
- # multiply channels
- [scale_channels]
- from=-4
- # conv3_1_linear
- [convolutional]
- filters=24
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=linear
- ### CONV4 - MBConv6 - 1 (2)
- # dropout only before residual connection
- [dropout]
- probability=.2
- # block_3_1
- [shortcut]
- from=-9
- activation=linear
- # conv_3_2_expand
- [convolutional]
- filters=144
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- # conv_3_2_dwise
- [convolutional]
- groups=144
- filters=144
- size=5
- pad=1
- stride=2
- batch_normalize=1
- activation=swish
- #squeeze-n-excitation
- [avgpool]
- # squeeze ratio r=16 (recommended r=16)
- [convolutional]
- filters=8
- size=1
- stride=1
- activation=swish
- # excitation
- [convolutional]
- filters=144
- size=1
- stride=1
- activation=logistic
- # multiply channels
- [scale_channels]
- from=-4
- # conv_3_2_linear
- [convolutional]
- filters=40
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=linear
- ### CONV4 - MBConv6 - 2 (2)
- # conv_4_1_expand
- [convolutional]
- filters=192
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- # conv_4_1_dwise
- [convolutional]
- groups=192
- filters=192
- size=5
- stride=1
- pad=1
- batch_normalize=1
- activation=swish
- #squeeze-n-excitation
- [avgpool]
- # squeeze ratio r=16 (recommended r=16)
- [convolutional]
- filters=16
- size=1
- stride=1
- activation=swish
- # excitation
- [convolutional]
- filters=192
- size=1
- stride=1
- activation=logistic
- # multiply channels
- [scale_channels]
- from=-4
- # conv_4_1_linear
- [convolutional]
- filters=40
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=linear
- ### CONV5 - MBConv6 - 1 (3)
- # dropout only before residual connection
- [dropout]
- probability=.2
- # block_4_2
- [shortcut]
- from=-9
- activation=linear
- # conv_4_3_expand
- [convolutional]
- filters=192
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- # conv_4_3_dwise
- [convolutional]
- groups=192
- filters=192
- size=3
- stride=1
- pad=1
- batch_normalize=1
- activation=swish
- #squeeze-n-excitation
- [avgpool]
- # squeeze ratio r=16 (recommended r=16)
- [convolutional]
- filters=16
- size=1
- stride=1
- activation=swish
- # excitation
- [convolutional]
- filters=192
- size=1
- stride=1
- activation=logistic
- # multiply channels
- [scale_channels]
- from=-4
- # conv_4_3_linear
- [convolutional]
- filters=80
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=linear
- ### CONV5 - MBConv6 - 2 (3)
- # conv_4_4_expand
- [convolutional]
- filters=384
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- # conv_4_4_dwise
- [convolutional]
- groups=384
- filters=384
- size=3
- stride=1
- pad=1
- batch_normalize=1
- activation=swish
- #squeeze-n-excitation
- [avgpool]
- # squeeze ratio r=16 (recommended r=16)
- [convolutional]
- filters=24
- size=1
- stride=1
- activation=swish
- # excitation
- [convolutional]
- filters=384
- size=1
- stride=1
- activation=logistic
- # multiply channels
- [scale_channels]
- from=-4
- # conv_4_4_linear
- [convolutional]
- filters=80
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=linear
- ### CONV5 - MBConv6 - 3 (3)
- # dropout only before residual connection
- [dropout]
- probability=.2
- # block_4_4
- [shortcut]
- from=-9
- activation=linear
- # conv_4_5_expand
- [convolutional]
- filters=384
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- # conv_4_5_dwise
- [convolutional]
- groups=384
- filters=384
- size=3
- stride=1
- pad=1
- batch_normalize=1
- activation=swish
- #squeeze-n-excitation
- [avgpool]
- # squeeze ratio r=16 (recommended r=16)
- [convolutional]
- filters=24
- size=1
- stride=1
- activation=swish
- # excitation
- [convolutional]
- filters=384
- size=1
- stride=1
- activation=logistic
- # multiply channels
- [scale_channels]
- from=-4
- # conv_4_5_linear
- [convolutional]
- filters=80
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=linear
- ### CONV6 - MBConv6 - 1 (3)
- # dropout only before residual connection
- [dropout]
- probability=.2
- # block_4_6
- [shortcut]
- from=-9
- activation=linear
- # conv_4_7_expand
- [convolutional]
- filters=384
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- # conv_4_7_dwise
- [convolutional]
- groups=384
- filters=384
- size=5
- pad=1
- stride=2
- batch_normalize=1
- activation=swish
- #squeeze-n-excitation
- [avgpool]
- # squeeze ratio r=16 (recommended r=16)
- [convolutional]
- filters=24
- size=1
- stride=1
- activation=swish
- # excitation
- [convolutional]
- filters=384
- size=1
- stride=1
- activation=logistic
- # multiply channels
- [scale_channels]
- from=-4
- # conv_4_7_linear
- [convolutional]
- filters=112
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=linear
- ### CONV6 - MBConv6 - 2 (3)
- # conv_5_1_expand
- [convolutional]
- filters=576
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- # conv_5_1_dwise
- [convolutional]
- groups=576
- filters=576
- size=5
- stride=1
- pad=1
- batch_normalize=1
- activation=swish
- #squeeze-n-excitation
- [avgpool]
- # squeeze ratio r=16 (recommended r=16)
- [convolutional]
- filters=32
- size=1
- stride=1
- activation=swish
- # excitation
- [convolutional]
- filters=576
- size=1
- stride=1
- activation=logistic
- # multiply channels
- [scale_channels]
- from=-4
- # conv_5_1_linear
- [convolutional]
- filters=112
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=linear
- ### CONV6 - MBConv6 - 3 (3)
- # dropout only before residual connection
- [dropout]
- probability=.2
- # block_5_1
- [shortcut]
- from=-9
- activation=linear
- # conv_5_2_expand
- [convolutional]
- filters=576
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- # conv_5_2_dwise
- [convolutional]
- groups=576
- filters=576
- size=5
- stride=1
- pad=1
- batch_normalize=1
- activation=swish
- #squeeze-n-excitation
- [avgpool]
- # squeeze ratio r=16 (recommended r=16)
- [convolutional]
- filters=32
- size=1
- stride=1
- activation=swish
- # excitation
- [convolutional]
- filters=576
- size=1
- stride=1
- activation=logistic
- # multiply channels
- [scale_channels]
- from=-4
- # conv_5_2_linear
- [convolutional]
- filters=112
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=linear
- ### CONV7 - MBConv6 - 1 (4)
- # dropout only before residual connection
- [dropout]
- probability=.2
- # block_5_2
- [shortcut]
- from=-9
- activation=linear
- # conv_5_3_expand
- [convolutional]
- filters=576
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- # conv_5_3_dwise
- [convolutional]
- groups=576
- filters=576
- size=5
- pad=1
- stride=2
- batch_normalize=1
- activation=swish
- #squeeze-n-excitation
- [avgpool]
- # squeeze ratio r=16 (recommended r=16)
- [convolutional]
- filters=32
- size=1
- stride=1
- activation=swish
- # excitation
- [convolutional]
- filters=576
- size=1
- stride=1
- activation=logistic
- # multiply channels
- [scale_channels]
- from=-4
- # conv_5_3_linear
- [convolutional]
- filters=192
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=linear
- ### CONV7 - MBConv6 - 2 (4)
- # conv_6_1_expand
- [convolutional]
- filters=960
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- # conv_6_1_dwise
- [convolutional]
- groups=960
- filters=960
- size=5
- stride=1
- pad=1
- batch_normalize=1
- activation=swish
- #squeeze-n-excitation
- [avgpool]
- # squeeze ratio r=16 (recommended r=16)
- [convolutional]
- filters=64
- size=1
- stride=1
- activation=swish
- # excitation
- [convolutional]
- filters=960
- size=1
- stride=1
- activation=logistic
- # multiply channels
- [scale_channels]
- from=-4
- # conv_6_1_linear
- [convolutional]
- filters=192
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=linear
- ### CONV7 - MBConv6 - 3 (4)
- # dropout only before residual connection
- [dropout]
- probability=.2
- # block_6_1
- [shortcut]
- from=-9
- activation=linear
- # conv_6_2_expand
- [convolutional]
- filters=960
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- # conv_6_2_dwise
- [convolutional]
- groups=960
- filters=960
- size=5
- stride=1
- pad=1
- batch_normalize=1
- activation=swish
- #squeeze-n-excitation
- [avgpool]
- # squeeze ratio r=16 (recommended r=16)
- [convolutional]
- filters=64
- size=1
- stride=1
- activation=swish
- # excitation
- [convolutional]
- filters=960
- size=1
- stride=1
- activation=logistic
- # multiply channels
- [scale_channels]
- from=-4
- # conv_6_2_linear
- [convolutional]
- filters=192
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=linear
- ### CONV7 - MBConv6 - 4 (4)
- # dropout only before residual connection
- [dropout]
- probability=.2
- # block_6_1
- [shortcut]
- from=-9
- activation=linear
- # conv_6_2_expand
- [convolutional]
- filters=960
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- # conv_6_2_dwise
- [convolutional]
- groups=960
- filters=960
- size=5
- stride=1
- pad=1
- batch_normalize=1
- activation=swish
- #squeeze-n-excitation
- [avgpool]
- # squeeze ratio r=16 (recommended r=16)
- [convolutional]
- filters=64
- size=1
- stride=1
- activation=swish
- # excitation
- [convolutional]
- filters=960
- size=1
- stride=1
- activation=logistic
- # multiply channels
- [scale_channels]
- from=-4
- # conv_6_2_linear
- [convolutional]
- filters=192
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=linear
- ### CONV8 - MBConv6 - 1 (1)
- # dropout only before residual connection
- [dropout]
- probability=.2
- # block_6_2
- [shortcut]
- from=-9
- activation=linear
- # conv_6_3_expand
- [convolutional]
- filters=960
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- # conv_6_3_dwise
- [convolutional]
- groups=960
- filters=960
- size=3
- stride=1
- pad=1
- batch_normalize=1
- activation=swish
- #squeeze-n-excitation
- [avgpool]
- # squeeze ratio r=16 (recommended r=16)
- [convolutional]
- filters=64
- size=1
- stride=1
- activation=swish
- # excitation
- [convolutional]
- filters=960
- size=1
- stride=1
- activation=logistic
- # multiply channels
- [scale_channels]
- from=-4
- # conv_6_3_linear
- [convolutional]
- filters=320
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=linear
- ### CONV9 - Conv2d 1x1
- # conv_6_4
- [convolutional]
- filters=1280
- size=1
- stride=1
- pad=0
- batch_normalize=1
- activation=swish
- [avgpool]
- [dropout]
- probability=.2
- [convolutional]
- filters=1000
- size=1
- stride=1
- pad=0
- activation=linear
- [softmax]
- groups=1
- #[cost]
- #type=sse
|