efficientnet_b0.cfg 11 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009
  1. [net]
  2. # Training
  3. batch=120
  4. subdivisions=4
  5. # Testing
  6. #batch=1
  7. #subdivisions=1
  8. height=224
  9. width=224
  10. channels=3
  11. momentum=0.9
  12. decay=0.0005
  13. max_crop=256
  14. #mixup=4
  15. blur=1
  16. cutmix=1
  17. mosaic=1
  18. burn_in=1000
  19. #burn_in=100
  20. learning_rate=0.256
  21. policy=poly
  22. power=4
  23. max_batches=800000
  24. momentum=0.9
  25. decay=0.00005
  26. angle=7
  27. hue=.1
  28. saturation=.75
  29. exposure=.75
  30. aspect=.75
  31. ### CONV1 - 1 (1)
  32. # conv1
  33. [convolutional]
  34. filters=32
  35. size=3
  36. pad=1
  37. stride=2
  38. batch_normalize=1
  39. activation=swish
  40. ### CONV2 - MBConv1 - 1 (1)
  41. # conv2_1_expand
  42. [convolutional]
  43. filters=32
  44. size=1
  45. stride=1
  46. pad=0
  47. batch_normalize=1
  48. activation=swish
  49. # conv2_1_dwise
  50. [convolutional]
  51. groups=32
  52. filters=32
  53. size=3
  54. stride=1
  55. pad=1
  56. batch_normalize=1
  57. activation=swish
  58. #squeeze-n-excitation
  59. [avgpool]
  60. # squeeze ratio r=4 (recommended r=16)
  61. [convolutional]
  62. filters=8
  63. size=1
  64. stride=1
  65. activation=swish
  66. # excitation
  67. [convolutional]
  68. filters=32
  69. size=1
  70. stride=1
  71. activation=logistic
  72. # multiply channels
  73. [scale_channels]
  74. from=-4
  75. # conv2_1_linear
  76. [convolutional]
  77. filters=16
  78. size=1
  79. stride=1
  80. pad=0
  81. batch_normalize=1
  82. activation=linear
  83. ### CONV3 - MBConv6 - 1 (2)
  84. # conv2_2_expand
  85. [convolutional]
  86. filters=96
  87. size=1
  88. stride=1
  89. pad=0
  90. batch_normalize=1
  91. activation=swish
  92. # conv2_2_dwise
  93. [convolutional]
  94. groups=96
  95. filters=96
  96. size=3
  97. pad=1
  98. stride=2
  99. batch_normalize=1
  100. activation=swish
  101. #squeeze-n-excitation
  102. [avgpool]
  103. # squeeze ratio r=8 (recommended r=16)
  104. [convolutional]
  105. filters=16
  106. size=1
  107. stride=1
  108. activation=swish
  109. # excitation
  110. [convolutional]
  111. filters=96
  112. size=1
  113. stride=1
  114. activation=logistic
  115. # multiply channels
  116. [scale_channels]
  117. from=-4
  118. # conv2_2_linear
  119. [convolutional]
  120. filters=24
  121. size=1
  122. stride=1
  123. pad=0
  124. batch_normalize=1
  125. activation=linear
  126. ### CONV3 - MBConv6 - 2 (2)
  127. # conv3_1_expand
  128. [convolutional]
  129. filters=144
  130. size=1
  131. stride=1
  132. pad=0
  133. batch_normalize=1
  134. activation=swish
  135. # conv3_1_dwise
  136. [convolutional]
  137. groups=144
  138. filters=144
  139. size=3
  140. stride=1
  141. pad=1
  142. batch_normalize=1
  143. activation=swish
  144. #squeeze-n-excitation
  145. [avgpool]
  146. # squeeze ratio r=16 (recommended r=16)
  147. [convolutional]
  148. filters=8
  149. size=1
  150. stride=1
  151. activation=swish
  152. # excitation
  153. [convolutional]
  154. filters=144
  155. size=1
  156. stride=1
  157. activation=logistic
  158. # multiply channels
  159. [scale_channels]
  160. from=-4
  161. # conv3_1_linear
  162. [convolutional]
  163. filters=24
  164. size=1
  165. stride=1
  166. pad=0
  167. batch_normalize=1
  168. activation=linear
  169. ### CONV4 - MBConv6 - 1 (2)
  170. # dropout only before residual connection
  171. [dropout]
  172. probability=.2
  173. # block_3_1
  174. [shortcut]
  175. from=-9
  176. activation=linear
  177. # conv_3_2_expand
  178. [convolutional]
  179. filters=144
  180. size=1
  181. stride=1
  182. pad=0
  183. batch_normalize=1
  184. activation=swish
  185. # conv_3_2_dwise
  186. [convolutional]
  187. groups=144
  188. filters=144
  189. size=5
  190. pad=1
  191. stride=2
  192. batch_normalize=1
  193. activation=swish
  194. #squeeze-n-excitation
  195. [avgpool]
  196. # squeeze ratio r=16 (recommended r=16)
  197. [convolutional]
  198. filters=8
  199. size=1
  200. stride=1
  201. activation=swish
  202. # excitation
  203. [convolutional]
  204. filters=144
  205. size=1
  206. stride=1
  207. activation=logistic
  208. # multiply channels
  209. [scale_channels]
  210. from=-4
  211. # conv_3_2_linear
  212. [convolutional]
  213. filters=40
  214. size=1
  215. stride=1
  216. pad=0
  217. batch_normalize=1
  218. activation=linear
  219. ### CONV4 - MBConv6 - 2 (2)
  220. # conv_4_1_expand
  221. [convolutional]
  222. filters=192
  223. size=1
  224. stride=1
  225. pad=0
  226. batch_normalize=1
  227. activation=swish
  228. # conv_4_1_dwise
  229. [convolutional]
  230. groups=192
  231. filters=192
  232. size=5
  233. stride=1
  234. pad=1
  235. batch_normalize=1
  236. activation=swish
  237. #squeeze-n-excitation
  238. [avgpool]
  239. # squeeze ratio r=16 (recommended r=16)
  240. [convolutional]
  241. filters=16
  242. size=1
  243. stride=1
  244. activation=swish
  245. # excitation
  246. [convolutional]
  247. filters=192
  248. size=1
  249. stride=1
  250. activation=logistic
  251. # multiply channels
  252. [scale_channels]
  253. from=-4
  254. # conv_4_1_linear
  255. [convolutional]
  256. filters=40
  257. size=1
  258. stride=1
  259. pad=0
  260. batch_normalize=1
  261. activation=linear
  262. ### CONV5 - MBConv6 - 1 (3)
  263. # dropout only before residual connection
  264. [dropout]
  265. probability=.2
  266. # block_4_2
  267. [shortcut]
  268. from=-9
  269. activation=linear
  270. # conv_4_3_expand
  271. [convolutional]
  272. filters=192
  273. size=1
  274. stride=1
  275. pad=0
  276. batch_normalize=1
  277. activation=swish
  278. # conv_4_3_dwise
  279. [convolutional]
  280. groups=192
  281. filters=192
  282. size=3
  283. stride=1
  284. pad=1
  285. batch_normalize=1
  286. activation=swish
  287. #squeeze-n-excitation
  288. [avgpool]
  289. # squeeze ratio r=16 (recommended r=16)
  290. [convolutional]
  291. filters=16
  292. size=1
  293. stride=1
  294. activation=swish
  295. # excitation
  296. [convolutional]
  297. filters=192
  298. size=1
  299. stride=1
  300. activation=logistic
  301. # multiply channels
  302. [scale_channels]
  303. from=-4
  304. # conv_4_3_linear
  305. [convolutional]
  306. filters=80
  307. size=1
  308. stride=1
  309. pad=0
  310. batch_normalize=1
  311. activation=linear
  312. ### CONV5 - MBConv6 - 2 (3)
  313. # conv_4_4_expand
  314. [convolutional]
  315. filters=384
  316. size=1
  317. stride=1
  318. pad=0
  319. batch_normalize=1
  320. activation=swish
  321. # conv_4_4_dwise
  322. [convolutional]
  323. groups=384
  324. filters=384
  325. size=3
  326. stride=1
  327. pad=1
  328. batch_normalize=1
  329. activation=swish
  330. #squeeze-n-excitation
  331. [avgpool]
  332. # squeeze ratio r=16 (recommended r=16)
  333. [convolutional]
  334. filters=24
  335. size=1
  336. stride=1
  337. activation=swish
  338. # excitation
  339. [convolutional]
  340. filters=384
  341. size=1
  342. stride=1
  343. activation=logistic
  344. # multiply channels
  345. [scale_channels]
  346. from=-4
  347. # conv_4_4_linear
  348. [convolutional]
  349. filters=80
  350. size=1
  351. stride=1
  352. pad=0
  353. batch_normalize=1
  354. activation=linear
  355. ### CONV5 - MBConv6 - 3 (3)
  356. # dropout only before residual connection
  357. [dropout]
  358. probability=.2
  359. # block_4_4
  360. [shortcut]
  361. from=-9
  362. activation=linear
  363. # conv_4_5_expand
  364. [convolutional]
  365. filters=384
  366. size=1
  367. stride=1
  368. pad=0
  369. batch_normalize=1
  370. activation=swish
  371. # conv_4_5_dwise
  372. [convolutional]
  373. groups=384
  374. filters=384
  375. size=3
  376. stride=1
  377. pad=1
  378. batch_normalize=1
  379. activation=swish
  380. #squeeze-n-excitation
  381. [avgpool]
  382. # squeeze ratio r=16 (recommended r=16)
  383. [convolutional]
  384. filters=24
  385. size=1
  386. stride=1
  387. activation=swish
  388. # excitation
  389. [convolutional]
  390. filters=384
  391. size=1
  392. stride=1
  393. activation=logistic
  394. # multiply channels
  395. [scale_channels]
  396. from=-4
  397. # conv_4_5_linear
  398. [convolutional]
  399. filters=80
  400. size=1
  401. stride=1
  402. pad=0
  403. batch_normalize=1
  404. activation=linear
  405. ### CONV6 - MBConv6 - 1 (3)
  406. # dropout only before residual connection
  407. [dropout]
  408. probability=.2
  409. # block_4_6
  410. [shortcut]
  411. from=-9
  412. activation=linear
  413. # conv_4_7_expand
  414. [convolutional]
  415. filters=384
  416. size=1
  417. stride=1
  418. pad=0
  419. batch_normalize=1
  420. activation=swish
  421. # conv_4_7_dwise
  422. [convolutional]
  423. groups=384
  424. filters=384
  425. size=5
  426. pad=1
  427. stride=2
  428. batch_normalize=1
  429. activation=swish
  430. #squeeze-n-excitation
  431. [avgpool]
  432. # squeeze ratio r=16 (recommended r=16)
  433. [convolutional]
  434. filters=24
  435. size=1
  436. stride=1
  437. activation=swish
  438. # excitation
  439. [convolutional]
  440. filters=384
  441. size=1
  442. stride=1
  443. activation=logistic
  444. # multiply channels
  445. [scale_channels]
  446. from=-4
  447. # conv_4_7_linear
  448. [convolutional]
  449. filters=112
  450. size=1
  451. stride=1
  452. pad=0
  453. batch_normalize=1
  454. activation=linear
  455. ### CONV6 - MBConv6 - 2 (3)
  456. # conv_5_1_expand
  457. [convolutional]
  458. filters=576
  459. size=1
  460. stride=1
  461. pad=0
  462. batch_normalize=1
  463. activation=swish
  464. # conv_5_1_dwise
  465. [convolutional]
  466. groups=576
  467. filters=576
  468. size=5
  469. stride=1
  470. pad=1
  471. batch_normalize=1
  472. activation=swish
  473. #squeeze-n-excitation
  474. [avgpool]
  475. # squeeze ratio r=16 (recommended r=16)
  476. [convolutional]
  477. filters=32
  478. size=1
  479. stride=1
  480. activation=swish
  481. # excitation
  482. [convolutional]
  483. filters=576
  484. size=1
  485. stride=1
  486. activation=logistic
  487. # multiply channels
  488. [scale_channels]
  489. from=-4
  490. # conv_5_1_linear
  491. [convolutional]
  492. filters=112
  493. size=1
  494. stride=1
  495. pad=0
  496. batch_normalize=1
  497. activation=linear
  498. ### CONV6 - MBConv6 - 3 (3)
  499. # dropout only before residual connection
  500. [dropout]
  501. probability=.2
  502. # block_5_1
  503. [shortcut]
  504. from=-9
  505. activation=linear
  506. # conv_5_2_expand
  507. [convolutional]
  508. filters=576
  509. size=1
  510. stride=1
  511. pad=0
  512. batch_normalize=1
  513. activation=swish
  514. # conv_5_2_dwise
  515. [convolutional]
  516. groups=576
  517. filters=576
  518. size=5
  519. stride=1
  520. pad=1
  521. batch_normalize=1
  522. activation=swish
  523. #squeeze-n-excitation
  524. [avgpool]
  525. # squeeze ratio r=16 (recommended r=16)
  526. [convolutional]
  527. filters=32
  528. size=1
  529. stride=1
  530. activation=swish
  531. # excitation
  532. [convolutional]
  533. filters=576
  534. size=1
  535. stride=1
  536. activation=logistic
  537. # multiply channels
  538. [scale_channels]
  539. from=-4
  540. # conv_5_2_linear
  541. [convolutional]
  542. filters=112
  543. size=1
  544. stride=1
  545. pad=0
  546. batch_normalize=1
  547. activation=linear
  548. ### CONV7 - MBConv6 - 1 (4)
  549. # dropout only before residual connection
  550. [dropout]
  551. probability=.2
  552. # block_5_2
  553. [shortcut]
  554. from=-9
  555. activation=linear
  556. # conv_5_3_expand
  557. [convolutional]
  558. filters=576
  559. size=1
  560. stride=1
  561. pad=0
  562. batch_normalize=1
  563. activation=swish
  564. # conv_5_3_dwise
  565. [convolutional]
  566. groups=576
  567. filters=576
  568. size=5
  569. pad=1
  570. stride=2
  571. batch_normalize=1
  572. activation=swish
  573. #squeeze-n-excitation
  574. [avgpool]
  575. # squeeze ratio r=16 (recommended r=16)
  576. [convolutional]
  577. filters=32
  578. size=1
  579. stride=1
  580. activation=swish
  581. # excitation
  582. [convolutional]
  583. filters=576
  584. size=1
  585. stride=1
  586. activation=logistic
  587. # multiply channels
  588. [scale_channels]
  589. from=-4
  590. # conv_5_3_linear
  591. [convolutional]
  592. filters=192
  593. size=1
  594. stride=1
  595. pad=0
  596. batch_normalize=1
  597. activation=linear
  598. ### CONV7 - MBConv6 - 2 (4)
  599. # conv_6_1_expand
  600. [convolutional]
  601. filters=960
  602. size=1
  603. stride=1
  604. pad=0
  605. batch_normalize=1
  606. activation=swish
  607. # conv_6_1_dwise
  608. [convolutional]
  609. groups=960
  610. filters=960
  611. size=5
  612. stride=1
  613. pad=1
  614. batch_normalize=1
  615. activation=swish
  616. #squeeze-n-excitation
  617. [avgpool]
  618. # squeeze ratio r=16 (recommended r=16)
  619. [convolutional]
  620. filters=64
  621. size=1
  622. stride=1
  623. activation=swish
  624. # excitation
  625. [convolutional]
  626. filters=960
  627. size=1
  628. stride=1
  629. activation=logistic
  630. # multiply channels
  631. [scale_channels]
  632. from=-4
  633. # conv_6_1_linear
  634. [convolutional]
  635. filters=192
  636. size=1
  637. stride=1
  638. pad=0
  639. batch_normalize=1
  640. activation=linear
  641. ### CONV7 - MBConv6 - 3 (4)
  642. # dropout only before residual connection
  643. [dropout]
  644. probability=.2
  645. # block_6_1
  646. [shortcut]
  647. from=-9
  648. activation=linear
  649. # conv_6_2_expand
  650. [convolutional]
  651. filters=960
  652. size=1
  653. stride=1
  654. pad=0
  655. batch_normalize=1
  656. activation=swish
  657. # conv_6_2_dwise
  658. [convolutional]
  659. groups=960
  660. filters=960
  661. size=5
  662. stride=1
  663. pad=1
  664. batch_normalize=1
  665. activation=swish
  666. #squeeze-n-excitation
  667. [avgpool]
  668. # squeeze ratio r=16 (recommended r=16)
  669. [convolutional]
  670. filters=64
  671. size=1
  672. stride=1
  673. activation=swish
  674. # excitation
  675. [convolutional]
  676. filters=960
  677. size=1
  678. stride=1
  679. activation=logistic
  680. # multiply channels
  681. [scale_channels]
  682. from=-4
  683. # conv_6_2_linear
  684. [convolutional]
  685. filters=192
  686. size=1
  687. stride=1
  688. pad=0
  689. batch_normalize=1
  690. activation=linear
  691. ### CONV7 - MBConv6 - 4 (4)
  692. # dropout only before residual connection
  693. [dropout]
  694. probability=.2
  695. # block_6_1
  696. [shortcut]
  697. from=-9
  698. activation=linear
  699. # conv_6_2_expand
  700. [convolutional]
  701. filters=960
  702. size=1
  703. stride=1
  704. pad=0
  705. batch_normalize=1
  706. activation=swish
  707. # conv_6_2_dwise
  708. [convolutional]
  709. groups=960
  710. filters=960
  711. size=5
  712. stride=1
  713. pad=1
  714. batch_normalize=1
  715. activation=swish
  716. #squeeze-n-excitation
  717. [avgpool]
  718. # squeeze ratio r=16 (recommended r=16)
  719. [convolutional]
  720. filters=64
  721. size=1
  722. stride=1
  723. activation=swish
  724. # excitation
  725. [convolutional]
  726. filters=960
  727. size=1
  728. stride=1
  729. activation=logistic
  730. # multiply channels
  731. [scale_channels]
  732. from=-4
  733. # conv_6_2_linear
  734. [convolutional]
  735. filters=192
  736. size=1
  737. stride=1
  738. pad=0
  739. batch_normalize=1
  740. activation=linear
  741. ### CONV8 - MBConv6 - 1 (1)
  742. # dropout only before residual connection
  743. [dropout]
  744. probability=.2
  745. # block_6_2
  746. [shortcut]
  747. from=-9
  748. activation=linear
  749. # conv_6_3_expand
  750. [convolutional]
  751. filters=960
  752. size=1
  753. stride=1
  754. pad=0
  755. batch_normalize=1
  756. activation=swish
  757. # conv_6_3_dwise
  758. [convolutional]
  759. groups=960
  760. filters=960
  761. size=3
  762. stride=1
  763. pad=1
  764. batch_normalize=1
  765. activation=swish
  766. #squeeze-n-excitation
  767. [avgpool]
  768. # squeeze ratio r=16 (recommended r=16)
  769. [convolutional]
  770. filters=64
  771. size=1
  772. stride=1
  773. activation=swish
  774. # excitation
  775. [convolutional]
  776. filters=960
  777. size=1
  778. stride=1
  779. activation=logistic
  780. # multiply channels
  781. [scale_channels]
  782. from=-4
  783. # conv_6_3_linear
  784. [convolutional]
  785. filters=320
  786. size=1
  787. stride=1
  788. pad=0
  789. batch_normalize=1
  790. activation=linear
  791. ### CONV9 - Conv2d 1x1
  792. # conv_6_4
  793. [convolutional]
  794. filters=1280
  795. size=1
  796. stride=1
  797. pad=0
  798. batch_normalize=1
  799. activation=swish
  800. [avgpool]
  801. [dropout]
  802. probability=.2
  803. [convolutional]
  804. filters=1000
  805. size=1
  806. stride=1
  807. pad=0
  808. activation=linear
  809. [softmax]
  810. groups=1
  811. #[cost]
  812. #type=sse