123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371 |
- #include "batchnorm_layer.h"
- #include "blas.h"
- #include "utils.h"
- #include <stdio.h>
- layer make_batchnorm_layer(int batch, int w, int h, int c, int train)
- {
- fprintf(stderr, "Batch Normalization Layer: %d x %d x %d image\n", w,h,c);
- layer layer = { (LAYER_TYPE)0 };
- layer.type = BATCHNORM;
- layer.batch = batch;
- layer.train = train;
- layer.h = layer.out_h = h;
- layer.w = layer.out_w = w;
- layer.c = layer.out_c = c;
- layer.n = layer.c;
- layer.output = (float*)xcalloc(h * w * c * batch, sizeof(float));
- layer.delta = (float*)xcalloc(h * w * c * batch, sizeof(float));
- layer.inputs = w*h*c;
- layer.outputs = layer.inputs;
- layer.biases = (float*)xcalloc(c, sizeof(float));
- layer.bias_updates = (float*)xcalloc(c, sizeof(float));
- layer.scales = (float*)xcalloc(c, sizeof(float));
- layer.scale_updates = (float*)xcalloc(c, sizeof(float));
- int i;
- for(i = 0; i < c; ++i){
- layer.scales[i] = 1;
- }
- layer.mean = (float*)xcalloc(c, sizeof(float));
- layer.variance = (float*)xcalloc(c, sizeof(float));
- layer.rolling_mean = (float*)xcalloc(c, sizeof(float));
- layer.rolling_variance = (float*)xcalloc(c, sizeof(float));
- layer.forward = forward_batchnorm_layer;
- layer.backward = backward_batchnorm_layer;
- layer.update = update_batchnorm_layer;
- #ifdef GPU
- layer.forward_gpu = forward_batchnorm_layer_gpu;
- layer.backward_gpu = backward_batchnorm_layer_gpu;
- layer.update_gpu = update_batchnorm_layer_gpu;
- layer.output_gpu = cuda_make_array(layer.output, h * w * c * batch);
- layer.biases_gpu = cuda_make_array(layer.biases, c);
- layer.scales_gpu = cuda_make_array(layer.scales, c);
- if (train) {
- layer.delta_gpu = cuda_make_array(layer.delta, h * w * c * batch);
- layer.bias_updates_gpu = cuda_make_array(layer.bias_updates, c);
- layer.scale_updates_gpu = cuda_make_array(layer.scale_updates, c);
- layer.mean_delta_gpu = cuda_make_array(layer.mean, c);
- layer.variance_delta_gpu = cuda_make_array(layer.variance, c);
- }
- layer.mean_gpu = cuda_make_array(layer.mean, c);
- layer.variance_gpu = cuda_make_array(layer.variance, c);
- layer.rolling_mean_gpu = cuda_make_array(layer.mean, c);
- layer.rolling_variance_gpu = cuda_make_array(layer.variance, c);
- if (train) {
- layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
- #ifndef CUDNN
- layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
- #endif // not CUDNN
- }
- #ifdef CUDNN
- CHECK_CUDNN(cudnnCreateTensorDescriptor(&layer.normTensorDesc));
- CHECK_CUDNN(cudnnCreateTensorDescriptor(&layer.normDstTensorDesc));
- CHECK_CUDNN(cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w));
- CHECK_CUDNN(cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1));
- #endif
- #endif
- return layer;
- }
- void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
- {
- int i,b,f;
- for(f = 0; f < n; ++f){
- float sum = 0;
- for(b = 0; b < batch; ++b){
- for(i = 0; i < size; ++i){
- int index = i + size*(f + n*b);
- sum += delta[index] * x_norm[index];
- }
- }
- scale_updates[f] += sum;
- }
- }
- void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
- {
- int i,j,k;
- for(i = 0; i < filters; ++i){
- mean_delta[i] = 0;
- for (j = 0; j < batch; ++j) {
- for (k = 0; k < spatial; ++k) {
- int index = j*filters*spatial + i*spatial + k;
- mean_delta[i] += delta[index];
- }
- }
- mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
- }
- }
- void variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
- {
- int i,j,k;
- for(i = 0; i < filters; ++i){
- variance_delta[i] = 0;
- for(j = 0; j < batch; ++j){
- for(k = 0; k < spatial; ++k){
- int index = j*filters*spatial + i*spatial + k;
- variance_delta[i] += delta[index]*(x[index] - mean[i]);
- }
- }
- variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
- }
- }
- void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
- {
- int f, j, k;
- for(j = 0; j < batch; ++j){
- for(f = 0; f < filters; ++f){
- for(k = 0; k < spatial; ++k){
- int index = j*filters*spatial + f*spatial + k;
- delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
- }
- }
- }
- }
- void resize_batchnorm_layer(layer *l, int w, int h)
- {
- l->out_h = l->h = h;
- l->out_w = l->w = w;
- l->outputs = l->inputs = h*w*l->c;
- const int output_size = l->outputs * l->batch;
- l->output = (float*)realloc(l->output, output_size * sizeof(float));
- l->delta = (float*)realloc(l->delta, output_size * sizeof(float));
- #ifdef GPU
- cuda_free(l->output_gpu);
- l->output_gpu = cuda_make_array(l->output, output_size);
- if (l->train) {
- cuda_free(l->delta_gpu);
- l->delta_gpu = cuda_make_array(l->delta, output_size);
- cuda_free(l->x_gpu);
- l->x_gpu = cuda_make_array(l->output, output_size);
- #ifndef CUDNN
- cuda_free(l->x_norm_gpu);
- l->x_norm_gpu = cuda_make_array(l->output, output_size);
- #endif // not CUDNN
- }
- #ifdef CUDNN
- CHECK_CUDNN(cudnnDestroyTensorDescriptor(l->normDstTensorDesc));
- CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normDstTensorDesc));
- CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w));
- #endif // CUDNN
- #endif // GPU
- }
- void forward_batchnorm_layer(layer l, network_state state)
- {
- if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1);
- if(l.type == CONNECTED){
- l.out_c = l.outputs;
- l.out_h = l.out_w = 1;
- }
- if(state.train){
- mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean);
- variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance);
- scal_cpu(l.out_c, .9, l.rolling_mean, 1);
- axpy_cpu(l.out_c, .1, l.mean, 1, l.rolling_mean, 1);
- scal_cpu(l.out_c, .9, l.rolling_variance, 1);
- axpy_cpu(l.out_c, .1, l.variance, 1, l.rolling_variance, 1);
- copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1);
- normalize_cpu(l.output, l.mean, l.variance, l.batch, l.out_c, l.out_h*l.out_w);
- copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1);
- } else {
- normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.out_c, l.out_h*l.out_w);
- }
- scale_bias(l.output, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
- add_bias(l.output, l.biases, l.batch, l.out_c, l.out_w*l.out_h);
- }
- void backward_batchnorm_layer(const layer l, network_state state)
- {
- backward_scale_cpu(l.x_norm, l.delta, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates);
- scale_bias(l.delta, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
- mean_delta_cpu(l.delta, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta);
- variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta);
- normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.out_c, l.out_w*l.out_h, l.delta);
- if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, l.delta, 1, state.delta, 1);
- }
- void update_batchnorm_layer(layer l, int batch, float learning_rate, float momentum, float decay)
- {
- //int size = l.nweights;
- axpy_cpu(l.c, learning_rate / batch, l.bias_updates, 1, l.biases, 1);
- scal_cpu(l.c, momentum, l.bias_updates, 1);
- axpy_cpu(l.c, learning_rate / batch, l.scale_updates, 1, l.scales, 1);
- scal_cpu(l.c, momentum, l.scale_updates, 1);
- }
- #ifdef GPU
- void pull_batchnorm_layer(layer l)
- {
- cuda_pull_array(l.biases_gpu, l.biases, l.c);
- cuda_pull_array(l.scales_gpu, l.scales, l.c);
- cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
- cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
- }
- void push_batchnorm_layer(layer l)
- {
- cuda_push_array(l.biases_gpu, l.biases, l.c);
- cuda_push_array(l.scales_gpu, l.scales, l.c);
- cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
- cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
- }
- void forward_batchnorm_layer_gpu(layer l, network_state state)
- {
- if (l.type == BATCHNORM) simple_copy_ongpu(l.outputs*l.batch, state.input, l.output_gpu);
- //copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
- if (state.train) {
- simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.x_gpu);
- #ifdef CUDNN
- float one = 1;
- float zero = 0;
- cudnnBatchNormalizationForwardTraining(cudnn_handle(),
- CUDNN_BATCHNORM_SPATIAL,
- &one,
- &zero,
- l.normDstTensorDesc,
- l.x_gpu, // input
- l.normDstTensorDesc,
- l.output_gpu, // output
- l.normTensorDesc,
- l.scales_gpu,
- l.biases_gpu,
- .01,
- l.rolling_mean_gpu, // output (should be FP32)
- l.rolling_variance_gpu, // output (should be FP32)
- .00001,
- l.mean_gpu, // output (should be FP32)
- l.variance_gpu); // output (should be FP32)
- if (state.net.try_fix_nan) {
- fix_nan_and_inf(l.scales_gpu, l.n);
- fix_nan_and_inf(l.biases_gpu, l.n);
- fix_nan_and_inf(l.mean_gpu, l.n);
- fix_nan_and_inf(l.variance_gpu, l.n);
- fix_nan_and_inf(l.rolling_mean_gpu, l.n);
- fix_nan_and_inf(l.rolling_variance_gpu, l.n);
- }
- #else // CUDNN
- fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
- fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
- scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
- axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
- scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
- axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
- copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
- normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
- copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
- scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
- add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
- #endif // CUDNN
- }
- else {
- normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
- scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
- add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
- }
- }
- void backward_batchnorm_layer_gpu(layer l, network_state state)
- {
- if (!state.train) {
- l.mean_gpu = l.rolling_mean_gpu;
- l.variance_gpu = l.rolling_variance_gpu;
- }
- #ifdef CUDNN
- float one = 1;
- float zero = 0;
- cudnnBatchNormalizationBackward(cudnn_handle(),
- CUDNN_BATCHNORM_SPATIAL,
- &one,
- &zero,
- &one,
- &one,
- l.normDstTensorDesc,
- l.x_gpu, // input
- l.normDstTensorDesc,
- l.delta_gpu, // input
- l.normDstTensorDesc,
- l.output_gpu, //l.x_norm_gpu, // output
- l.normTensorDesc,
- l.scales_gpu, // input (should be FP32)
- l.scale_updates_gpu, // output (should be FP32)
- l.bias_updates_gpu, // output (should be FP32)
- .00001,
- l.mean_gpu, // input (should be FP32)
- l.variance_gpu); // input (should be FP32)
- simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.delta_gpu);
- //simple_copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, l.delta_gpu);
- #else // CUDNN
- backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
- backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
- scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
- fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
- fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
- normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
- #endif // CUDNN
- if (l.type == BATCHNORM) simple_copy_ongpu(l.outputs*l.batch, l.delta_gpu, state.delta);
- //copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
- if (state.net.try_fix_nan) {
- fix_nan_and_inf(l.scale_updates_gpu, l.n);
- fix_nan_and_inf(l.bias_updates_gpu, l.n);
- }
- }
- void update_batchnorm_layer_gpu(layer l, int batch, float learning_rate_init, float momentum, float decay)
- {
- float learning_rate = learning_rate_init*l.learning_rate_scale;
- //float momentum = a.momentum;
- //float decay = a.decay;
- //int batch = a.batch;
- axpy_ongpu(l.c, learning_rate / batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
- scal_ongpu(l.c, momentum, l.bias_updates_gpu, 1);
- axpy_ongpu(l.c, learning_rate / batch, l.scale_updates_gpu, 1, l.scales_gpu, 1);
- scal_ongpu(l.c, momentum, l.scale_updates_gpu, 1);
- }
- #endif // GPU
|