batchnorm_layer.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371
  1. #include "batchnorm_layer.h"
  2. #include "blas.h"
  3. #include "utils.h"
  4. #include <stdio.h>
  5. layer make_batchnorm_layer(int batch, int w, int h, int c, int train)
  6. {
  7. fprintf(stderr, "Batch Normalization Layer: %d x %d x %d image\n", w,h,c);
  8. layer layer = { (LAYER_TYPE)0 };
  9. layer.type = BATCHNORM;
  10. layer.batch = batch;
  11. layer.train = train;
  12. layer.h = layer.out_h = h;
  13. layer.w = layer.out_w = w;
  14. layer.c = layer.out_c = c;
  15. layer.n = layer.c;
  16. layer.output = (float*)xcalloc(h * w * c * batch, sizeof(float));
  17. layer.delta = (float*)xcalloc(h * w * c * batch, sizeof(float));
  18. layer.inputs = w*h*c;
  19. layer.outputs = layer.inputs;
  20. layer.biases = (float*)xcalloc(c, sizeof(float));
  21. layer.bias_updates = (float*)xcalloc(c, sizeof(float));
  22. layer.scales = (float*)xcalloc(c, sizeof(float));
  23. layer.scale_updates = (float*)xcalloc(c, sizeof(float));
  24. int i;
  25. for(i = 0; i < c; ++i){
  26. layer.scales[i] = 1;
  27. }
  28. layer.mean = (float*)xcalloc(c, sizeof(float));
  29. layer.variance = (float*)xcalloc(c, sizeof(float));
  30. layer.rolling_mean = (float*)xcalloc(c, sizeof(float));
  31. layer.rolling_variance = (float*)xcalloc(c, sizeof(float));
  32. layer.forward = forward_batchnorm_layer;
  33. layer.backward = backward_batchnorm_layer;
  34. layer.update = update_batchnorm_layer;
  35. #ifdef GPU
  36. layer.forward_gpu = forward_batchnorm_layer_gpu;
  37. layer.backward_gpu = backward_batchnorm_layer_gpu;
  38. layer.update_gpu = update_batchnorm_layer_gpu;
  39. layer.output_gpu = cuda_make_array(layer.output, h * w * c * batch);
  40. layer.biases_gpu = cuda_make_array(layer.biases, c);
  41. layer.scales_gpu = cuda_make_array(layer.scales, c);
  42. if (train) {
  43. layer.delta_gpu = cuda_make_array(layer.delta, h * w * c * batch);
  44. layer.bias_updates_gpu = cuda_make_array(layer.bias_updates, c);
  45. layer.scale_updates_gpu = cuda_make_array(layer.scale_updates, c);
  46. layer.mean_delta_gpu = cuda_make_array(layer.mean, c);
  47. layer.variance_delta_gpu = cuda_make_array(layer.variance, c);
  48. }
  49. layer.mean_gpu = cuda_make_array(layer.mean, c);
  50. layer.variance_gpu = cuda_make_array(layer.variance, c);
  51. layer.rolling_mean_gpu = cuda_make_array(layer.mean, c);
  52. layer.rolling_variance_gpu = cuda_make_array(layer.variance, c);
  53. if (train) {
  54. layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
  55. #ifndef CUDNN
  56. layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
  57. #endif // not CUDNN
  58. }
  59. #ifdef CUDNN
  60. CHECK_CUDNN(cudnnCreateTensorDescriptor(&layer.normTensorDesc));
  61. CHECK_CUDNN(cudnnCreateTensorDescriptor(&layer.normDstTensorDesc));
  62. CHECK_CUDNN(cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w));
  63. CHECK_CUDNN(cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1));
  64. #endif
  65. #endif
  66. return layer;
  67. }
  68. void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
  69. {
  70. int i,b,f;
  71. for(f = 0; f < n; ++f){
  72. float sum = 0;
  73. for(b = 0; b < batch; ++b){
  74. for(i = 0; i < size; ++i){
  75. int index = i + size*(f + n*b);
  76. sum += delta[index] * x_norm[index];
  77. }
  78. }
  79. scale_updates[f] += sum;
  80. }
  81. }
  82. void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
  83. {
  84. int i,j,k;
  85. for(i = 0; i < filters; ++i){
  86. mean_delta[i] = 0;
  87. for (j = 0; j < batch; ++j) {
  88. for (k = 0; k < spatial; ++k) {
  89. int index = j*filters*spatial + i*spatial + k;
  90. mean_delta[i] += delta[index];
  91. }
  92. }
  93. mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
  94. }
  95. }
  96. void variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
  97. {
  98. int i,j,k;
  99. for(i = 0; i < filters; ++i){
  100. variance_delta[i] = 0;
  101. for(j = 0; j < batch; ++j){
  102. for(k = 0; k < spatial; ++k){
  103. int index = j*filters*spatial + i*spatial + k;
  104. variance_delta[i] += delta[index]*(x[index] - mean[i]);
  105. }
  106. }
  107. variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
  108. }
  109. }
  110. void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
  111. {
  112. int f, j, k;
  113. for(j = 0; j < batch; ++j){
  114. for(f = 0; f < filters; ++f){
  115. for(k = 0; k < spatial; ++k){
  116. int index = j*filters*spatial + f*spatial + k;
  117. delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
  118. }
  119. }
  120. }
  121. }
  122. void resize_batchnorm_layer(layer *l, int w, int h)
  123. {
  124. l->out_h = l->h = h;
  125. l->out_w = l->w = w;
  126. l->outputs = l->inputs = h*w*l->c;
  127. const int output_size = l->outputs * l->batch;
  128. l->output = (float*)realloc(l->output, output_size * sizeof(float));
  129. l->delta = (float*)realloc(l->delta, output_size * sizeof(float));
  130. #ifdef GPU
  131. cuda_free(l->output_gpu);
  132. l->output_gpu = cuda_make_array(l->output, output_size);
  133. if (l->train) {
  134. cuda_free(l->delta_gpu);
  135. l->delta_gpu = cuda_make_array(l->delta, output_size);
  136. cuda_free(l->x_gpu);
  137. l->x_gpu = cuda_make_array(l->output, output_size);
  138. #ifndef CUDNN
  139. cuda_free(l->x_norm_gpu);
  140. l->x_norm_gpu = cuda_make_array(l->output, output_size);
  141. #endif // not CUDNN
  142. }
  143. #ifdef CUDNN
  144. CHECK_CUDNN(cudnnDestroyTensorDescriptor(l->normDstTensorDesc));
  145. CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normDstTensorDesc));
  146. CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w));
  147. #endif // CUDNN
  148. #endif // GPU
  149. }
  150. void forward_batchnorm_layer(layer l, network_state state)
  151. {
  152. if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1);
  153. if(l.type == CONNECTED){
  154. l.out_c = l.outputs;
  155. l.out_h = l.out_w = 1;
  156. }
  157. if(state.train){
  158. mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean);
  159. variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance);
  160. scal_cpu(l.out_c, .9, l.rolling_mean, 1);
  161. axpy_cpu(l.out_c, .1, l.mean, 1, l.rolling_mean, 1);
  162. scal_cpu(l.out_c, .9, l.rolling_variance, 1);
  163. axpy_cpu(l.out_c, .1, l.variance, 1, l.rolling_variance, 1);
  164. copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1);
  165. normalize_cpu(l.output, l.mean, l.variance, l.batch, l.out_c, l.out_h*l.out_w);
  166. copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1);
  167. } else {
  168. normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.out_c, l.out_h*l.out_w);
  169. }
  170. scale_bias(l.output, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
  171. add_bias(l.output, l.biases, l.batch, l.out_c, l.out_w*l.out_h);
  172. }
  173. void backward_batchnorm_layer(const layer l, network_state state)
  174. {
  175. backward_scale_cpu(l.x_norm, l.delta, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates);
  176. scale_bias(l.delta, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
  177. mean_delta_cpu(l.delta, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta);
  178. variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta);
  179. normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.out_c, l.out_w*l.out_h, l.delta);
  180. if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, l.delta, 1, state.delta, 1);
  181. }
  182. void update_batchnorm_layer(layer l, int batch, float learning_rate, float momentum, float decay)
  183. {
  184. //int size = l.nweights;
  185. axpy_cpu(l.c, learning_rate / batch, l.bias_updates, 1, l.biases, 1);
  186. scal_cpu(l.c, momentum, l.bias_updates, 1);
  187. axpy_cpu(l.c, learning_rate / batch, l.scale_updates, 1, l.scales, 1);
  188. scal_cpu(l.c, momentum, l.scale_updates, 1);
  189. }
  190. #ifdef GPU
  191. void pull_batchnorm_layer(layer l)
  192. {
  193. cuda_pull_array(l.biases_gpu, l.biases, l.c);
  194. cuda_pull_array(l.scales_gpu, l.scales, l.c);
  195. cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
  196. cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
  197. }
  198. void push_batchnorm_layer(layer l)
  199. {
  200. cuda_push_array(l.biases_gpu, l.biases, l.c);
  201. cuda_push_array(l.scales_gpu, l.scales, l.c);
  202. cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
  203. cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
  204. }
  205. void forward_batchnorm_layer_gpu(layer l, network_state state)
  206. {
  207. if (l.type == BATCHNORM) simple_copy_ongpu(l.outputs*l.batch, state.input, l.output_gpu);
  208. //copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
  209. if (state.train) {
  210. simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.x_gpu);
  211. #ifdef CUDNN
  212. float one = 1;
  213. float zero = 0;
  214. cudnnBatchNormalizationForwardTraining(cudnn_handle(),
  215. CUDNN_BATCHNORM_SPATIAL,
  216. &one,
  217. &zero,
  218. l.normDstTensorDesc,
  219. l.x_gpu, // input
  220. l.normDstTensorDesc,
  221. l.output_gpu, // output
  222. l.normTensorDesc,
  223. l.scales_gpu,
  224. l.biases_gpu,
  225. .01,
  226. l.rolling_mean_gpu, // output (should be FP32)
  227. l.rolling_variance_gpu, // output (should be FP32)
  228. .00001,
  229. l.mean_gpu, // output (should be FP32)
  230. l.variance_gpu); // output (should be FP32)
  231. if (state.net.try_fix_nan) {
  232. fix_nan_and_inf(l.scales_gpu, l.n);
  233. fix_nan_and_inf(l.biases_gpu, l.n);
  234. fix_nan_and_inf(l.mean_gpu, l.n);
  235. fix_nan_and_inf(l.variance_gpu, l.n);
  236. fix_nan_and_inf(l.rolling_mean_gpu, l.n);
  237. fix_nan_and_inf(l.rolling_variance_gpu, l.n);
  238. }
  239. #else // CUDNN
  240. fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
  241. fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
  242. scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
  243. axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
  244. scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
  245. axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
  246. copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
  247. normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
  248. copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
  249. scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
  250. add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
  251. #endif // CUDNN
  252. }
  253. else {
  254. normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
  255. scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
  256. add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
  257. }
  258. }
  259. void backward_batchnorm_layer_gpu(layer l, network_state state)
  260. {
  261. if (!state.train) {
  262. l.mean_gpu = l.rolling_mean_gpu;
  263. l.variance_gpu = l.rolling_variance_gpu;
  264. }
  265. #ifdef CUDNN
  266. float one = 1;
  267. float zero = 0;
  268. cudnnBatchNormalizationBackward(cudnn_handle(),
  269. CUDNN_BATCHNORM_SPATIAL,
  270. &one,
  271. &zero,
  272. &one,
  273. &one,
  274. l.normDstTensorDesc,
  275. l.x_gpu, // input
  276. l.normDstTensorDesc,
  277. l.delta_gpu, // input
  278. l.normDstTensorDesc,
  279. l.output_gpu, //l.x_norm_gpu, // output
  280. l.normTensorDesc,
  281. l.scales_gpu, // input (should be FP32)
  282. l.scale_updates_gpu, // output (should be FP32)
  283. l.bias_updates_gpu, // output (should be FP32)
  284. .00001,
  285. l.mean_gpu, // input (should be FP32)
  286. l.variance_gpu); // input (should be FP32)
  287. simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.delta_gpu);
  288. //simple_copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, l.delta_gpu);
  289. #else // CUDNN
  290. backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
  291. backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
  292. scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
  293. fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
  294. fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
  295. normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
  296. #endif // CUDNN
  297. if (l.type == BATCHNORM) simple_copy_ongpu(l.outputs*l.batch, l.delta_gpu, state.delta);
  298. //copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
  299. if (state.net.try_fix_nan) {
  300. fix_nan_and_inf(l.scale_updates_gpu, l.n);
  301. fix_nan_and_inf(l.bias_updates_gpu, l.n);
  302. }
  303. }
  304. void update_batchnorm_layer_gpu(layer l, int batch, float learning_rate_init, float momentum, float decay)
  305. {
  306. float learning_rate = learning_rate_init*l.learning_rate_scale;
  307. //float momentum = a.momentum;
  308. //float decay = a.decay;
  309. //int batch = a.batch;
  310. axpy_ongpu(l.c, learning_rate / batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
  311. scal_ongpu(l.c, momentum, l.bias_updates_gpu, 1);
  312. axpy_ongpu(l.c, learning_rate / batch, l.scale_updates_gpu, 1, l.scales_gpu, 1);
  313. scal_ongpu(l.c, momentum, l.scale_updates_gpu, 1);
  314. }
  315. #endif // GPU