123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- import torch
- from torch import nn
- from torchvision.models.mobilenetv3 import MobileNetV3, InvertedResidualConfig
- from torchvision.transforms.functional import normalize
- class MobileNetV3LargeEncoder(MobileNetV3):
- def __init__(self, pretrained: bool = False):
- super().__init__(
- inverted_residual_setting=[
- InvertedResidualConfig( 16, 3, 16, 16, False, "RE", 1, 1, 1),
- InvertedResidualConfig( 16, 3, 64, 24, False, "RE", 2, 1, 1), # C1
- InvertedResidualConfig( 24, 3, 72, 24, False, "RE", 1, 1, 1),
- InvertedResidualConfig( 24, 5, 72, 40, True, "RE", 2, 1, 1), # C2
- InvertedResidualConfig( 40, 5, 120, 40, True, "RE", 1, 1, 1),
- InvertedResidualConfig( 40, 5, 120, 40, True, "RE", 1, 1, 1),
- InvertedResidualConfig( 40, 3, 240, 80, False, "HS", 2, 1, 1), # C3
- InvertedResidualConfig( 80, 3, 200, 80, False, "HS", 1, 1, 1),
- InvertedResidualConfig( 80, 3, 184, 80, False, "HS", 1, 1, 1),
- InvertedResidualConfig( 80, 3, 184, 80, False, "HS", 1, 1, 1),
- InvertedResidualConfig( 80, 3, 480, 112, True, "HS", 1, 1, 1),
- InvertedResidualConfig(112, 3, 672, 112, True, "HS", 1, 1, 1),
- InvertedResidualConfig(112, 5, 672, 160, True, "HS", 2, 2, 1), # C4
- InvertedResidualConfig(160, 5, 960, 160, True, "HS", 1, 2, 1),
- InvertedResidualConfig(160, 5, 960, 160, True, "HS", 1, 2, 1),
- ],
- last_channel=1280
- )
-
- if pretrained:
- self.load_state_dict(torch.hub.load_state_dict_from_url(
- 'https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth'))
- del self.avgpool
- del self.classifier
-
- def forward_single_frame(self, x):
- x = normalize(x, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
-
- x = self.features[0](x)
- x = self.features[1](x)
- f1 = x
- x = self.features[2](x)
- x = self.features[3](x)
- f2 = x
- x = self.features[4](x)
- x = self.features[5](x)
- x = self.features[6](x)
- f3 = x
- x = self.features[7](x)
- x = self.features[8](x)
- x = self.features[9](x)
- x = self.features[10](x)
- x = self.features[11](x)
- x = self.features[12](x)
- x = self.features[13](x)
- x = self.features[14](x)
- x = self.features[15](x)
- x = self.features[16](x)
- f4 = x
- return [f1, f2, f3, f4]
-
- def forward_time_series(self, x):
- B, T = x.shape[:2]
- features = self.forward_single_frame(x.flatten(0, 1))
- features = [f.unflatten(0, (B, T)) for f in features]
- return features
- def forward(self, x):
- if x.ndim == 5:
- return self.forward_time_series(x)
- else:
- return self.forward_single_frame(x)
|